
Development and Evaluation of a TLS-Testsuite

Philipp Nieting

Master’s Thesis – May 22, 2022.
Chair for Network and Data Security.

Supervisor: Prof. Dr. Jörg Schwenk
Advisors: M. Sc. Robert Merget

Prof. Dr.-Ing. Juraj Somorovsky
Dipl.-Ing. Eugen Weiss (TÜViT)

Abstract

This thesis develops a testsuite containing test cases that allow checking the conformance
of a TLS implementation to the protocol specification. The testsuite provides the
possibility to execute client and server tests and includes test cases for the specifications
of TLS 1.2 and TLS 1.3. For high test coverage, a single test case performs multiple
handshakes that are automatically derived from a provided one, each negotiating a
different TLS cipher suite or applying fragmentation.

For the evaluation, the developed testsuite is executed against the most popular TLS
implementations like OpenSSL, BoringSSL and NSS. The results show that there are
many different behaviors among the implementations regarding their reaction to TLS
messages that do or do not conform to the specification. Such an unspecified behav-
ior can lead to interoperability issues and in specific circumstances even to security
problems.

Eidesstattliche Erklärung

Ich erkläre, dass ich keine Arbeit in gleicher oder ähnlicher Fassung bereits für eine andere
Prüfung an der Ruhr-Universität Bochum oder einer anderen Hochschule eingereicht
habe.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Die Stellen, die anderen Quellen dem Wortlaut oder
dem Sinn nach entnommen sind, habe ich unter Angabe der Quellen kenntlich gemacht.
Dies gilt sinngemäß auch für verwendete Zeichnungen, Skizzen, bildliche Darstellungen
und dergleichen.

Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digitalen
Version übereinstimmt. Ich erkläre mich damit einverstanden, dass die digitale Version
dieser Arbeit zwecks Plagiatsprüfung verwendet wird.

Official Declaration

Hereby I declare, that I have not submitted this thesis in this or similar form to
any other examination at the Ruhr-Universität Bochum or any other institution or
university.

I officially ensure, that this paper has been written solely on my own. I herewith officially
ensure, that I have not used any other sources but those stated by me. Any and every
parts of the text which constitute quotes in original wording or in its essence have been
explicitly referred by me by using official marking and proper quotation. This is also
valid for used drafts, pictures and similar formats.

I also officially ensure that the printed version as submitted by me fully confirms with
my digital version. I agree that the digital version will be used to subject the paper to
plagiarism examination.

Not this English translation but only the official version in German is legally bind-
ing.

Datum/Date Unterschrift/Signature

Erklärung

Ich erkläre mich damit einverstanden, dass meine Masterarbeit am Lehrstuhl NDS
dauerhaft in elektronischer und gedruckter Form aufbewahrt wird und dass die Ergebnisse
aus dieser Arbeit unter Einhaltung guter wissenschaftlicher Praxis in der Forschung weiter
verwendet werden dürfen.

Date Philipp Nieting

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Contribution . 3

2 Background 4
2.1 Transport Layer Security Protocol . 4

2.1.1 TLS 1.2 . 5
2.1.1.1 Extensions . 7

2.1.2 TLS 1.3 . 9
2.1.2.1 Extensions . 12

2.2 TLS-Attacker . 12
2.2.1 Specifying TLS message flows . 13
2.2.2 Executing TLS message flows . 14

2.2.2.1 Sending TLS messages 15
2.2.2.2 Receiving TLS messages 16

2.3 Docker . 16
2.4 TLS-Docker-Library . 17
2.5 Software testing . 18

2.5.1 JUnit 5 . 19

3 Implementation 20
3.1 Design . 20
3.2 Test Result . 22
3.3 Test Framework . 23

3.3.1 Command-Line Interface . 23
3.3.2 Conditional Test Execution . 24
3.3.3 Architecture . 27
3.3.4 Test Derivation . 30

3.3.4.1 Negotiated Cipher Suite 32
3.3.4.2 Fragmentation . 33

3.3.5 Testsuite Execution . 33
3.3.6 Modeling a Test Case . 35
3.3.7 GUI support in IDEs . 37

3.3.7.1 Preparation Phase . 37
3.3.7.2 Command-Line Arguments 38

Contents vi

3.3.8 Test Report . 38
3.4 Testsuite . 39

3.4.1 Implemented Tests . 39
3.4.1.1 RFC Compliance Tests 40
3.4.1.2 Length Field Tests . 41

3.5 Report Analyzer . 42
3.5.1 Score Calculation . 44

3.6 TLS-Docker-Library . 45
3.6.1 Docker Images – Build System . 45
3.6.2 Docker Images – Entrypoints . 46
3.6.3 Java Library . 47

4 Evaluation 48
4.1 Setup . 48
4.2 Results . 50

4.2.1 Multiple Implementations - Newest Versions 51
4.2.1.1 Overall Results . 51
4.2.1.2 Default Configuration . 54
4.2.1.3 Server (TLS 1.2) . 55
4.2.1.4 Server (TLS 1.3) . 58
4.2.1.5 Client (TLS 1.2) . 60
4.2.1.6 Client (TLS 1.3) . 62
4.2.1.7 Client and Server (TLS 1.2) 64
4.2.1.8 Client and Server (TLS 1.3) 65
4.2.1.9 Other Observations . 66

4.2.2 Same Implementation - Multiple Versions 67
4.2.2.1 tlslite-ng Server . 67
4.2.2.2 Botan Client . 68
4.2.2.3 NSS Client . 69

5 Conclusion 71
5.1 Future Work . 72

List of Figures 74

List of Tables 75

Bibliography 76

A Figures 80

B Tables 84

1 Introduction

We use the internet every day for online banking, social media or e-mails and also for
parts of our infrastructure. For all of these activities it is important to protect the
data sent, to prevent manipulations during the transmission and to preserve privacy.
This can be achieved using the transport layer security (TLS) protocol that provides
encryption, authentication and integrity to achieve the protection of the data. The
protocol is built on top of the transport layer, so it can be used for the majority of
application protocols.

The first versions of TLS are called secure sockets layer (SSL) and are cryptographically
broken today. The successors, TLS 1.0 and 1.1 are also considered as insecure today,
because of the usage of weak algorithms and published attacks [1, 2, 3, 4, 5, 6, 7]. The
current versions of TLS that are 1.2 and 1.3 are considered to be secure on up-to-date
systems.

1.1 Motivation

Although TLS 1.2 and 1.3 are theoretically secure this does not mean that every commu-
nication that uses these protocols is secure. A point of failure is the TLS stack, which is
the implementation of the protocol inside a library like OpenSSL, BoringSSL or NSS.
These TLS implementations perform all operations that are required by the protocol to
perform the handshake, that is, for example, the negotiation of cryptographic keys. They
are used by other programs like webservers, browsers, e-mail clients or other software
that use the TLS protocol. The advantage of this concept is that the security-related
tasks are executed by well-known libraries. Using existing software minimizes, on the
one hand, the development time and on the other hand the risk of implementation
flaws.

TLS implementations are complex and vulnerable to implementation flaws like every
other software. These lead, for example, to security vulnerabilities or interoperability
issues between clients and servers. If they are inside a TLS implementation, an attacker
might be able to ultimately defeat the protections offered by the TLS protocol [8,
9].

The goal of this thesis is to implement a testsuite for the TLS protocol that is capable of
testing the compliance of an implementation with the protocol specification. The testsuite

1.2 Related Work 2

should be a tool that can be used by developers to test their implementations as well as pen-
etration testers to estimate the quality of a TLS stack. To demonstrate the performance
of the developed testsuite, it is used to analyze the most popular TLS implementations
that provide an example client or server application.

1.2 Related Work

The idea of a testsuite for the TLS protocol is not new. There are tools available for
doing something similar. These projects are either not available as open-source or they
are limited in their functionality.

tlsfuzzer. tlsfuzzer [10] is an open-source python project that consists of a fuzzing
library and a testsuite. The limitation of this project is, that every test case is a separate
program spanning a few hundred lines of code. This makes it complicated to understand
the tests and to run all available tests against a target. Another limitation is that tlsfuzzer
can only test server implementations.

Achelos TLS Inspector. The TLS Inspector developed by Achelos [11] is a tool to per-
form automated tests for TLS client and server implementations. These tests cover the
RFCs for TLS 1.1, 1.2 and 1.3 as well as additional penetration tests. The tool is not avail-
able as open-source. The company also does not provide an overview of security vulnerabil-
ities or other findings that could be found using the testsuite.

Other test tools. Another kind of TLS test tools are compatibility or vulnerability
scanners like TLS-Scanner [12], testssl.sh [13], Qualys SSL Labs [14] or How’s My
SSL [15]. These tools test known vulnerabilities like DROWN [16] or Heartbleed [8],
supported cipher suites and other properties of the TLS configurations like HSTS. All
the mentioned tools, except How’s My SSL, are only able to test TLS server implementa-
tions.

For the development and evaluation of the testsuite the following projects are used as
the foundation.

• TLS-Attacker

• TLS-Compliance

• TLS-Docker-Library

1.3 Contribution 3

TLS-Attacker. The TLS-Attacker framework [17] provides a Java implementation of
the TLS protocol and complete control over the TLS handshake protocol. This results in
the ability to modify every message that is part of the handshake as well as to reorder
the messages. TLS-Attacker can act as client and server and thus can be used for writing
tests against client and server implementations.

TLS-Compliance. TLS-Compliance is a testsuite developed by Ebert [18] in 2018 as
part of a master thesis. This testsuite aimed for developing test cases based on the
RFCs describing TLS 1.2 and the belonging extensions. The project only provides
a Java program to run the tests against TLS servers that are spawned in Docker
containers. The implemented tests are used as the foundation for the developed test-
suite.

TLS-Docker-Library. The TLS-Docker-Library project is used for the evaluation part of
the thesis. Part of the project are Dockerfiles for more than 20 different TLS implementa-
tions of multiple versions. Most of the Docker images run the example TLS server/client
applications that are shipped as part of the implementations. This project also contains
a Java library to manage the Docker containers.

1.3 Contribution

The main contribution of this thesis is the developed testsuite that provides a high degree
of flexibility, an extendable architecture and application programming interfaces (APIs)
to write test cases for the TLS protocol efficiently. Furthermore, it is capable of testing
TLS 1.2 and TLS 1.3 servers and clients. The testsuite is also designed to be usable with
low overhead to test arbitrary TLS implementations.

2 Background

This chapter gives background information to the topics that are required to understand
the following chapters. This includes an overview of the TLS protocol in versions 1.2 and
1.3.

Further, the architecture of TLS-Attacker is described that the testsuite uses to perform
TLS handshakes. The TLS-Docker-Library is used for the evaluation of server and client
implementations.

Since the testsuite is a tool for software testing an introduction to this topic is given
as well as to JUnit 5, a testing framework, that the testsuite uses to model the test
cases.

2.1 Transport Layer Security Protocol

The Transport Layer Security (TLS) protocol exists to be able to establish a secure
communication channel between two peers. The establishment process is called handshake
during which messages are exchanged between the peers to negotiate cryptographic
parameters. The established channel provides the security properties confidentiality,
authenticity and integrity.

Confidentiality is achieved through encryption. TLS uses an asymmetric key exchange
mechanism to negotiate a symmetric encryption key between the two communicating
parties. For the negotiation of the symmetric encryption key it is possible, to use key
agreement or key transport mechanisms. Which mechanism is used, depends on the
negotiated cipher suite. A cipher suite specifies which algorithms for key exchange,
encryption, signatures and hashing are used.

Authenticity is based on the public key infrastructure (PKI) and signatures that are
created during the handshake. This results in the possibility that one or both peers can
authenticate towards the other peer. In the World Wide Web most of the time only the
server authenticates towards the client so that the client can verify and ensure that it is
communicating with the correct server.

Integrity is achieved during the handshake through signatures and after the handshake
using message authentication codes (MACs). Since the keys for the MACs are calculated

2.1 Transport Layer Security Protocol 5

after the authentication, MACs also provide authenticity. TLS 1.2 supports Encrypt-
then-MAC as well as Mac-then-Encrypt which led to problems like padding oracles in
the past [19].

The protocol is specified in multiple RFCs. The specification of TLS 1.2 includes more
than 10 different RFCs as shown in Figure A.1a. The network of RFCs makes this
protocol complex to implement. TLS 1.3 has less RFCs that are needed to be considered
for the implementation since it is the newest version of the protocol and therefore a leaf
in the network of RFCs (Figure A.1b).

Both versions of TLS use two layers consisting of multiple sub-protocols to abstract the
functionality. The foundation is the record layer that belongs to the Record protocol and
acts as a data container to encapsulate the payload. The payload is either a message
that belongs to a higher level layer that consists of the handshake-, alert-, application-
or change cipher spec protocol. Which type of payload it contains, is indicated with
a content type field that is part of the record layer. This architecture is visualized
in Figure 2.1. After the symmetric encryption keys are negotiated, the encryption is
activated on the record layer level. This means that every message that is part of the
protocol below the record protocol is encrypted.

Record Protocol

Handshake Protocol Change Cipherspec
Protocol Alert Protocol Application Protocol

Figure 2.1: Subprotocols of TLS 1.2.

2.1.1 TLS 1.2

TLS 1.2 was specified in 2008. The regular handshake to negotiate cryptographic param-
eters needs two round trip times (RTT) and involves at least nine messages exchanged
between the two peers that are described in the following and visualized in Figure 2.2.
Depending on the TLS configuration more messages might be sent. Since the testsuite
does not cover every feature of the TLS protocol, such as client authentication, these
additional optional messages are not explained in detail.

ClientHello. The ClientHello message is sent by the client and proposes supported TLS
properties towards the server. These are, for example, the supported cipher suites and
compression modes. In addition, the message contains the latest supported version of
TLS as well as a cryptographic secure 32-byte random value that is used later to derive
the encryption keys. Optionally, a session id is present that signals to the server that
the client wants to reuse a previous established session, which would result in a shorter

2.1 Transport Layer Security Protocol 6

Client Server
ClientHello

ServerHello
Certificate
ServerKeyExchange
ServerHelloDone

ClientKeyExchange
ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 2.2: Message flow of TLS 1.2

handshake of 1 RTT. A list of extensions can also be part of this message. Since the
developed tests also test the implementation of extensions, the most important ones are
described in Section 2.1.1.1.

ServerHello. With the ServerHello message, the server selects the algorithms and the
TLS version proposed by the client. This message also contains a cryptographic se-
cure random value that is used during the key derivation process. If the client sends
a session id that the server recognizes, both parties continue with the Finished mes-
sage using the same algorithms negotiated in the handshake referenced by the ses-
sion id.

Certificate. The server usually sends his certificate to the client using the certificate
message, except when a cipher suite is negotiated that does not require authentication.
The certificate must contain a public key that is compatible with the selected cipher
suite. Non-anonymous cipher suites using a key exchange with ephemeral keys require
that the key pair can be used for signature operations. For a cipher suite using an
RSA key exchange, the key pair must be suitable for encryption operations. When a
certificate uses a static Diffie Hellman key, this key must be suited to be used for key
agreement.

ServerKeyExchange. The message is only sent by the server if a cipher suite is se-
lected that uses a key agreement key exchange mode with ephemeral keys and thus
supports perfect forward secrecy. The key parameters chosen by the server are signed
with the private key that belongs to his certificate. If a cipher suite is selected that

2.1 Transport Layer Security Protocol 7

does not require server authentication, the chosen parameters are not signed by the
server.

ServerHelloDone. This message signals the client that the server is done with the
communication and waits for messages sent by the client.

ClientKeyExchange. This message contains the key parameters chosen by the client.
In case of an RSA key exchange, the client chooses a premaster secret and encrypts it
with the RSA public key of the server that is part of the certificate. If a key agreement
cipher suite is selected by the server, the message contains the key parameters of the
client. After this message a shared secret is established between both peers, that is
the premaster secret. From the premaster secret together with the random values of
server and client, the 48 bytes long master secret is derived. The master secret is used
together with the random values to derive symmetric encryption and MAC keys as well
as initialization vectors for the cipher algorithms. The client and the server use different
cryptographic keys.

ChangeCipherSpec. The ChangeCipherSpec (CCS) message contains a single byte
set to 1 and tells the receiving peer that the following messages are encrypted. This
message is part of an extra protocol and thus needs to be sent in a separate record
layer.

Finished. As the final message of the handshake, the Finished message is sent. Since
the message is sent after the CCS message, it is encrypted. It contains a Keyed-Hash
Message Authentication Code (HMAC) over the messages of the handshake up to this
point, with the master secret as HMAC secret. Both peers have to verify the HMAC
they receive. This message ensures the integrity and authenticity of the complete
handshake.

2.1.1.1 Extensions

For the extensibility of the TLS protocol, an extension model exists that provides the
possibility to activate certain features. Extensions also have to be negotiated between
both peers. The support for most of these extensions is optional. Therefore, if a server
receives an extension from the client that it does not understand, it still must be possible
to perform a handshake.

The specification for most of the TLS extensions are not part of the TLS 1.2 RFC. Only
the signature algorithms extension is specified in the TLS 1.2 RFC. Other extensions are
defined in the following RFCs.

2.1 Transport Layer Security Protocol 8

• RFC 6066 - Transport Layer Security (TLS) Extensions: Extension Definitions [20]

– Server Name Indication (Section 3)

– Maximum Fragment Length Negotiation (Section 4)

– Client Certificate URLs (Section 5)

– Trusted CA Indication (Section 6)

– Truncated HMAC (Section 7)

– Certificate Status Request (Section 8)

• RFC 7366 - Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS) [21]

• RFC 7685 - A Transport Layer Security (TLS) ClientHello Padding Extension [22]

• RFC 8422 (RFC 4492) - Elliptic Curve Cryptography (ECC) Cipher Suites for
Transport Layer Security (TLS) Versions 1.2 and Earlier [23, 24]

– Supported Elliptic Curves Extension (Section 5.1.1)

– Supported Point Formats Extension (Section 5.1.2)

Extensions that are covered by tests are explained in the following.

Signature Algorithms. The specification of TLS 1.2 requires servers to support this
extension. The extension is sent by the client and contains a list of signature and hash
algorithm pairs that the client supports to verify. These signatures are, for example, the
signature of the server certificate or the key exchange parameters of the ServerKeyEx-
change message. This extension is new in TLS 1.2 and provides more flexibility for
signatures. In previous versions of TLS, signatures for certificates must use the same key
type as the public key of the certificate.

Server Name Indication. To be able to operate multiple domains using the same IP
address, the server needs to be able to determine the domain to dispatch the mes-
sages to the correct process. Since application data is encrypted by TLS, the do-
main has to be transmitted unencrypted as part of the handshake to the server. The
extension is sent in the ClientHello message and contains the domain name of the
server.

2.1 Transport Layer Security Protocol 9

Maximum Fragment Length Negotiation. This extension allows to limit the maximum
size transmitted in a TLS record layer. This is useful for implementations that are
constrained by hardware, like memory or bandwidth. The minimum size that can be
specified with this extension is 512 bytes. Clients request the negotiation of this extension
in the ClientHello message. If the server accepts the request of the client, it includes the
extension in the ServerHello message.

Encrypt-then-MAC. If the Encrypt-then-MAC extension is negotiated between both
parties, the payload of the TLS record layer is protected by the Encrypt-then-MAC
procedure instead of the MAC-then-Encrypt mechanism used per default. This makes
the encryption resilient against padding oracle attacks [19] and similar attacks like
Lucky 13 [2] that provides a side channel to distinguish a valid MAC from invalid
padding.

Padding Extension. The padding extension can be used to control the size of the
ClientHello message by including a zero bytes vector of arbitrary size in the exten-
sion. This is used to work around implementation bugs of certain TLS implementa-
tions [22].

Supported Elliptic Curves. When the client supports elliptic curve cipher suites, this
extension is used by the client to send a list of elliptic curves that the client sup-
ports to the server. Since every cipher suite using elliptic curves uses key agreement
to negotiate the premaster secret, both peers must agree to use the same elliptic
curve.

Point Formats Extension. RFC 4492 specifies multiple formats that can be used to
represent a point on an elliptic curve. Besides the uncompressed format, two compressed
formats exist to save bandwidth. RFC 8422 that obsoletes RFC 4492, deprecates the com-
pressed formats, thus only the uncompressed format remains.

2.1.2 TLS 1.3

TLS 1.3 is the newest version of TLS, released in 2018 and specified in RFC 8446 [25].
In contrast to TLS 1.2, it usually only needs one RTT for its handshake to negotiate
cryptographic keys. This is achieved by reordering the messages together with new
extensions that enable both peers to calculate a shared secret already after receiving the
hello messages. The new message flow is shown in Figure 2.3.

The handshake might not always look like this, because TLS 1.3 tries to negotiate a
shared secret already with the ClientHello and ServerHello messages that basically contain
the contents of a TLS 1.2 ClientKeyExchange respectively ServerKeyExchange message.

2.1 Transport Layer Security Protocol 10

Client Server
ClientHello

ServerHello
ChangeCipherSpec
EncryptedExtensions
Certificate
CertificateVerify
Finished

ChangeCipherSpec

Finished

Figure 2.3: Message flow of TLS 1.3

Since the client can only guess which Diffie Hellman or elliptic curve groups the server
supports, it might select a group that the server does not support. In this case, an
additional round trip is required, consisting of a HelloRetryRequest sent by the server
followed by a second ClientHello from the client. This is not described in detail, since it
is not covered by test cases (see Section 3.4.1).

Optionally a 0-RTT handshake mode is supported, where the client already sends
application data together with the ClientHello message. This is only possible if both
peers have performed a regular handshake before and negotiated a pre-shared-key (PSK).
This PSK is also used for session resumption. Since these features are not tested with
the testsuite, they are not explained in detail.

This version of TLS is designed to be backward compatible. Since the messages are
specified differently than the messages of TLS 1.2, this behavior is desired, so that
TLS 1.3 clients can negotiate an older TLS version if the server does not support
TLS 1.3. This is achieved by keeping the structure of the ClientHello and Server-
Hello messages the same and adding the new requirements of TLS 1.3 by using exten-
sions.

In addition, TLS 1.3 only supports secure encryption, hash and signature algorithms.
All TLS 1.2 cipher suites are removed from the specification. TLS 1.3 supports 5 cipher
suites in total, which all provide authenticated encryption. Regarding hash algorithms,
only SHA-2 algorithms are supported. In terms of signature algorithms, RSA-PKCS1 as
well as ECDSA with SHA-1 are only allowed to be used as certificate signatures, which
is needed for backward compatibility. For singing TLS messages, these algorithms are
not allowed to be used anymore [25, page 43]. This makes the protocol resilient against
Bleichenbacher’s attack by design [7, 1].

2.1 Transport Layer Security Protocol 11

ClientHello. The ClientHello message contains the same information as the ClientHello
of TLS 1.2 except new mandatory extensions that are the supported versions and key
share extensions that are explained later in Section 2.1.2.1. The session id only exists for
backward compatibility reasons and is not used for session resumption anymore. The same
applies to the protocol version which is set to the same value as in TLS 1.2, since the version
negotiation for TLS 1.3 is achieved with the supported versions extension. In addition, the
compression of TLS messages is deprecated, therefore, the list of supported compression
methods must contain the uncompressed algorithm.

ServerHello. The ServerHello message is also mainly unchanged to the previous version
of TLS. Like in the ClientHello message, it must contain the key share and supported
versions extension. The version field is also set to TLS 1.2 and the compression method
must be set to uncompressed. TLS 1.3 adds a new mechanism to the ServerHello that
enables clients to detect a downgrade of the negotiated TLS version. If the server selects
a version prior to TLS 1.3, it sets the last 8 bytes of the server random to a static
value.

ChangeCipherSpec. This message is only sent in the backward compatibility mode of
TLS 1.3. It serves the same purposes as the CCS message of TLS 1.2, that is that the follow-
ing messages will be encrypted. Because the message is not required, TLS 1.3 implemen-
tations should ignore the message and activate the encryption based on the state machine
that is part of the specification [25, Sections A.1 and A.2].

EncryptedExtensions. The EncryptedExtensions message is new in TLS 1.3 and pro-
vides a way to send extensions encrypted to the client. Because of this, the ServerHello
message only contains the key share and supported version extension. Every other exten-
sion that is sent by the server and can be encrypted, is part of the EncryptedExtensions
message.

Certificate. The Certificate message contains the certificate of the server. This message
is mandatory if session resumption is not used, which is at least the case at the first time
both peers perform a handshake.

CertificateVerify. This message provides authentication of the handshake by signing
the contents of all handshake protocol messages up to this point using the private
key of the server. The message is mandatory if a Certificate message was sent be-
fore.

Finished. The Finished message contains a MAC computed over every handshake
message using a key derived from a shared secret.

2.2 TLS-Attacker 12

2.1.2.1 Extensions

In contrast to TLS 1.2, multiple messages are specified to have extensions. These are the
ClientHello, ServerHello, EncryptedExtensions, Certificate, CertificateRequest, NewSes-
sionTicket and HelloRetryRequest. The RFC specifies which extension is allowed in which
message. Sending an extension as part of the wrong message is not allowed, so that the
receiving peer must terminate the connection [25, page 37].

Signature Algorithms. In contrast to TLS 1.2, the client is only required to send this
extension for TLS 1.3 renegotiation. In addition, the client must support one algorithm
that is allowed to be used to sign TLS messages. This means that the list of signature
and hash algorithms must at least contain one algorithm that does not use SHA-1 as
hash algorithm or RSA-PKCS1 as signature schema, since these algorithms are only
allowed to create signatures for certificates.

Supported Versions. For TLS 1.3 negotiation, this extension is required. When this is
sent by the client as part of the ClientHello message it contains a list of TLS versions
the client supports ordered by preference. The server only considers the versions that are
contained in this list to select a TLS version. The server only sends the selected TLS
version in the supported versions extension as part of the ServerHello message to the
client.

Supported Groups. This extension is similar to the supported elliptic curves extension
from TLS 1.2, with the difference that also finite field groups are allowed in the case of
TLS 1.3. The extension is required if a key share extension is sent, that is if the client
wants to achieve a 1-RTT handshake.

Key Share. The key share extension contains the ephemeral public keys that are part
of the ClientKeyExchange and ServerKeyExchange message in TLS 1.2. The extension
can contain multiple key share entries for different groups, each consisting of a supported
group, that is already part of the supported groups extension, and the public key. The
server must support at least one group to be able to achieve a 1-RTT handshake. The
public key of the server is sent in the key share extension contained inside the ServerHello
message.

2.2 TLS-Attacker

TLS-Attacker [17] is a Java framework that allows controlling the TLS protocol on byte
level. It can operate as server or client and provides APIs to specify the TLS messages
and their content that are going to be sent. This results in a powerful tool that can be

2.2 TLS-Attacker 13

used to specify a sequence of TLS messages performing a regular handshake as well as for
specifying a handshake that does not conform to the specification. Being able to model
the latter kind of handshakes is useful for detecting bugs in implementations by observing
the behavior of the other peer. Since the test cases of the testsuite use TLS-Attacker for
sending TLS messages its architecture is explained.

2.2.1 Specifying TLS message flows

Each message specified in TLS is implemented in TLS-Attacker as a separate Java
class. The fields of the TLS messages are modeled with the ModifiableVariable [26]
project. A ModifiableVariable object is a wrapper around a data type and provides
additional options to modify the contents during runtime. This is achieved by attaching
modifications to the object that are executed when the value of the wrapped data type
is accessed using the getValue() function. Using different modifications that allow to
replace, modify or expand the sent TLS messages, without changing the implementation
of the protocol.

For the specification and execution of a sequence of TLS messages with TLS-Attacker,
multiple classes are necessary. Figure 2.4 shows how the classes are used to per-
form a TLS handshake. The classes and their purposes are explained in the follow-
ing.

State

WorkflowTrace

Config
TlsContext

Initialize

Execute Actions

WorkflowExecutor TLS Handshake

TransportHandler

Figure 2.4: Overview of TLS-Attacker classes that are needed to perform a TLS hand-
shake.

Before a handshake can be executed, it first has to be specified. This is achieved using
the following two classes.

• WorkflowTrace

• Config

2.2 TLS-Attacker 14

WorkflowTrace. The WorkflowTrace object contains a list of actions that are exe-
cuted. Actions exist to send and receive TLS messages, such as the SendAction and
ReceiveAction. Both of these actions are initialized with classes that inherit from the
ProtocolMessage class and thus represent a TLS message. The WorkflowConfigura-
tionFactory class provides static methods that create a workflow containing the actions
to perform different types of handshakes.

Config. The Config object is used for the configuration of the TLS-Attacker framework.
Part of the configuration specifies network settings, for example the endpoint for the
communication when the framework operates as the client. Or on which interface and port
it should listen for incoming connections in case it acts as a server. TLS configurations,
such as which cipher suites or elliptic curve the implementation supports, are also part of
the Config. In addition, it contains several other Config flags that control how messages
are received and send or what should happen if there is no intersection of supported
algorithms. TLS-Attacker is shipped with a default config, that is stored in a XML file
default_config.xml and can be automatically loaded, using the static createConfig
function of the Config class.

2.2.2 Executing TLS message flows

For the execution of WorkflowTrace and Config objects, the following classes are
important to understand.

• State

• TlsContext

• WorkflowExecutor

State. The State object bundles a WorkflowTrace object together with a Config
object and thus forms a well-defined plan how and which messages should be exchanged
with another peer. It is also responsible for normalizing the WorkflowTrace, that is
setting up the configuration for the network connections using the settings from the
Config if this information is not already attached to the workflow. In addition, it
creates a TlsContext object for every connection and holds a reference to this con-
text.

TlsContext. The TlsContext object is a data store that is used during the TLS
handshake. It stores the negotiated parameters like the TLS version or cipher suite, as
well as cryptographic keys like the premaster secret.

2.2 TLS-Attacker 15

WorkflowExecutor. The WorkflowExecutor is an abstract class that is used to execute
a State object. A often used concrete subclass is the DefaultWorkflowExecutor class
initialized with the State specifying a handshake. The execution of the State is done
by executing each action of the WorkflowTrace. These actions take care of sending
and receiving TLS messages. Depending on the Config, the executor also initiates or
terminates the network connection. The connection, TCP or UDP, is handled by the
TransportHandler class that provides methods to send and receive messages using a
socket.

Executing a State involves sending and receiving TLS messages. As outlined above, each
TLS message is implemented as a Java class that inherits from the ProtocolMessage
class. Sending and receiving a message involves (de)serialization of this class. This
process is explained below. In addition, the TlsContext object constantly needs to be
updated, to keep track of negotiated parameters and keys.

2.2.2.1 Sending TLS messages

Before a TLS message can be sent, it needs to be prepared and serialized. For every TLS
protocol message class, a handler class exists inheriting from ProtocolMessageHandler
that provides a prepareMessage function. This function takes an instance of a message
object, coordinates the preparation and serialization using the Preparator respectively
Serializer classes and returns a byte array. Finally, the TlsContext is updated by the
adjustTlsContext function of the handler. The data flow of the message is shown in
Figure 2.5a.

Preparator. The Preparator classes preform the preparation of the messages. This
means that the Preparator sets the fields of a message as specified in the RFC, considering
the values specified in the Config and TlsContext object. A mechanism like this is
required to perform TLS handshakes since it is not known before connecting to the peer,
which algorithms it supports. Therefore, the exact content of the messages is not known
when the WorkflowTrace is created. However, modifications that are attached to the
ModifiableVariable fields of the messages are not overwritten by the Preparator and
executed during serialization.

Serializer. The Serializer classes take a message as input and serialize the message
content according to the specification into a byte array. To access the values of the
messages, the getValue function of the ModifiableVariable fields is used. Therefore
the value created by the Preparator is used as foundation modified by the modifications
attached to the field. The resulting byte array is sent over the network using the TCP-
or UDP protocol.

2.3 Docker 16

2.2.2.2 Receiving TLS messages

Receiving a TLS message is the transformation from a byte array to the message
class (see Figure 2.5b). This operation is also controlled by the Handler class, specifically
the parseMessage function. This function uses the Parser class of the correspond-
ing message to deserialize the byte array into an message object. After that, the
adjustTlsContext function is called that updates the TlsContext based on the received
information.

PreparatorHandler SerializerMessage Send message
bytesadjustTlsContext

(a) Sending a message.

ParserHandlerReceive message
bytes adjustTlsContext Message

(b) Receiving a message.

Figure 2.5: Processing of a sending/receiving TLS messages with TLS-Attacker classes.

2.3 Docker

Docker is a tool for container virtualization that are lightweight virtual machines. In
contrast to virtual machines, Docker containers use the same kernel as the operating
system and therefore can omit the hypervisor that emulates the computer. This makes
Docker containers more efficient than virtual machines [27].

In 2015, Docker founded the Open Container Initiative (OCI) [28] to standardize and open-
source how containers are executed and built. Since then, other tools like Podman [29]
were created that are able to run Docker containers as well. Therefore, Docker is
nowadays only a command-line tool for the administration of the container ecosystem.
Since this tool is used for the evaluation, specific Docker terms are explained in the
following.

Container. A Docker container is a running operating system or program that is
instantiated from a Docker image. Starting a Docker container is done using the docker
run command-line tool [30]. All changes an application makes during the runtime inside
a container only affect the container and never the underlying image. Such changes are,
for example, the creation of new files. Thus, they are vanished when the container is
removed. To persist data outside the container, it is possible to mount a local folder
inside the container or using a Docker volume. A Docker volume is an abstraction of
persistent storage. In its most simple form it is a folder on the hard drive, but also can
be a folder shared over network [31].

2.4 TLS-Docker-Library 17

Image. A Docker image contains a file system containing all the software installed
during the build process. Additionally, it contains instructions for the runtime how
to instantiate a container from this image. That is, for example, the program that is
executed when the container is started. This information is specified inside a Dockerfile.
Docker images are usually referenced by tags. That is a name and version number of the
image.

Dockerfile. The Dockerfile is a text file with instructions how to build a Docker image
with the docker build command-line tool [32]. Each Dockerfile first inherits from an
existing image, the base image, and extends this image with additional software. This
can be additional packages that are installed from a Linux repository or downloaded
from the internet, as well as source code that is copied from the local file system to the
image. The benefit of having a Dockerfile is that it produces a reproducible docker image
independent of the host operating system.

Docker Network. By default, all docker containers run inside a private network that
uses network address translation (NAT). Therefore, the containers have access to the
internet, but they are not accessible from the host without port forwarding. Inside the
network, Docker provides DNS services, so that each container can connect to another
container in the same network using the name or identifier of a container as hostname.
The docker run command-line tool provides the parameter –network that specifies inside
which network a container should run. Putting multiple containers into multiple networks
isolates them on the network layer from each other.

2.4 TLS-Docker-Library

The TLS-Docker-Library [33] is a project created in 2017 by Ebert [18] with the goal to pro-
vide a collection of TLS implementations as Docker images. The repository contains Dock-
erfiles for different implementations in multiple versions, which create Docker images that
execute as server or client. Therefore, this project is a valuable resource for the analysis of
how TLS implementations evolved across multiple versions.

Besides the Dockerfiles, the project also offers a Java library that provides an abstraction
layer to start these Docker containers using a unified API that works for every imple-
mentation. This is necessary since each server or client implementation needs different
command-line arguments to start successfully. These are, for example, the port on
which the server listens or the server to which a client implementation should connect
to.

Starting a TLS Docker container using the library is shown in Listing 1. This example
starts an OpenSSL server in version 1.1.1g listening on port 4343.

2.5 Software testing 18

1 DockerTlsManagerFactory manager = new DockerTlsManagerFactory();
2 TlsInstance server =

manager.getTlsServer(TlsImplementationType.OPENSSL, "1.1.1g",
4343);

→˓

→˓

3 server.start();

Listing 1: Starting an OpenSSL server using the Java library.

The command-line arguments for each implementation are specified in .profile files that
are XML files and part of the resources folder of the project. The content of these files
are serialized objects of the ParameterProfile class. Each profile specifies for which im-
plementation and role (server/client) it is suited, as well as the parameters that are needed
for the launch of the implementation. Using the library to start a TLS Docker container
triggers the evaluation of the parameters inside the .profile file. The resulting string is
used as command-line argument for the Docker container.

The library transforms the code from Listing 1 into the docker run command in Listing 2.
When both listings are compared it is notable that the Java library also handles the
network configuration that makes the server container reachable at 127.0.0.42:4343
that is loop-back address. Additionally, the Docker volume cert-data is mounted
by the container that contains the server certificates. These are generated during
the setup process of the project, that is explained in the readme file of the project
repository [33].

docker run -v cert-data:/cert/ openssl-server:1.1.1g -port 4343
-cert /cert/rsa2048cert.pem -key /cert/rsa2048key.pem -p
127.0.0.42:4343:4433

→˓

→˓

Listing 2: docker run command equivalent to the code from Listing 1.

2.5 Software testing

Software testing is used to find failures in software. These are, for example, bugs that are
the result of implementation failures. The goal is to find these failures by writing more
source code in the form of tests. Tests ideally execute the software with every possible
input to ensure that the software works as expected.

Writing software tests can be done on multiple levels. It is, for example, possible to only
test a single function of a program. This kind of test is known as unit tests. If the software
is more complex and consists of multiple modules created by multiple developers, there

2.5 Software testing 19

might also arise problems when these modules interact with each other. Tests that analyze
the functionality on this level are known as integration tests.

In the sense of this thesis, where TLS implementations are tested, the whole system
is under test and observed as a black box. In this case implementation failures are,
when the software receives an input, that is a (sequence) of TLS messages, and reacts
differently than specified in the specification of the TLS protocol. Thus, the developed
test cases test even more than integration tests and are therefore known as system
test.

2.5.1 JUnit 5

JUnit 5 is used as a testing framework to write the tests included in the testsuite.
It is the successor of JUnit 4 which is the most popular testing framework for Java
according to the Maven Repository usage numbers [34]. Version 5 was released in
2017 and introduced an extension system that allows extending the functionality of
JUnit.

Tests in JUnit can obtain three states after execution. Disabled, failed and succeeded.
Disabled tests are not executed by the framework, since specified conditions are not
fulfilled. A test is considered as failed if it throws an exception during execution. If neither
of them has occurred, the test is succeeded successfully.

The testsuite uses three different extension types to extend JUnit. JUnit provides an
interface for each extension type that can be implemented by classes. If the extension
class is registered to JUnit, the appropriate interface functions are called at runtime by
the JUnit framework.

TestWatcher. This extension interface has functions that are called whenever a test
terminates independently of the test result.

ExecutionCondition. Before a test is started, the function provided by the Execution-
Condition interface is called that returns an object indicating if the test case should be
executed or not.

ParameterResolver. Test class constructors or test methods are allowed to take a
parameter. If such a parameter is specified, a class implementing this extension interface
is responsible for resolving the parameter. That is creating the object that is passed as
the parameter to the function.

3 Implementation

This chapter describes the implementation of the TLS testsuite [35], the test frame-
work [36] and the setup that is used for the evaluation. The testsuite depends on the test
framework that provides the business logic for the test derivation and execution, and is
based on JUnit 5.

Finally, the report analyzer is introduced. This web application visualizes the reports
created by the testsuite and provides filter capabilities to quickly find interesting re-
sults.

3.1 Design

The implementation of the testsuite and the framework aims for modeling tight tests,
which are easy to understand and do not require much code. Section 3.3.6 describes how
test cases are modeled in detail. To make the tests tight, the target has to be forced
to negotiate certain TLS parameters, such as a specific cipher suite. This approach
allows observing whether the target reacts differently depending on negotiated TLS
parameters.

For example, a test case sending a Finished message with invalid content should always
succeed in the sense that the handshake is aborted by the receiving peer. However, bugs
in TLS implementations may lead to the completion of the handshake for a specific
cipher suite, even if the Finished message is invalid. These kinds of implementation
flaws can only be detected if multiple handshakes are performed. To perform this test, a
WorkflowTrace and Config object are created first that perform a handshake including
sending an invalid Finished message. The framework derives multiple WorkflowTrace
and Config objects from this, each sending only a single cipher suite in the ClientHello or
selecting a different cipher suite in the ServerHello message. The framework ensures that
only cipher suites are used that the server or client supports.

The general idea is to keep the test case that models a TLS handshake generic. Based on
the configuration of the framework, it derives multiple handshake configurations from the
one provided, each forcing the target to negotiate different TLS parameters. This concept
is illustrated in Figure 3.1. A test case described by a single TLS handshake is therefore
expanded to a test case with multiple handshakes. Each derived handshake can be seen
as a distinct test case and thus has its own test result.

3.1 Design 21

After the handshakes are created, the collection of handshakes is executed, which results
in sending and receiving TLS messages to the target client or server. Finally, the test
result needs to be determined. The framework provides APIs to model a validation
process and examine the received TLS messages.

Testsuite Test Framework

Test Case 1

State 1

Execute

Derivation

State 1 TLS
Messages

State 2

Target
Client/Server

Test Case 2

State 2

Figure 3.1: Overview of the testsuite architecture.

Another design goal for the framework is to provide more flexibility than the testsuite built
by Ebert [18]. Four major points are a limitation of the existing architecture, which the
newly developed testsuite and test framework aim to improve.

Target Configurability. The existing testsuite is mainly designed test implementations
running in Docker containers and is therefore difficult to use for testing arbitrary targets.
In contrast, the test framework introduced in this thesis, provides a command-line
interface that allows configuring the test target.

Client Tests. The developed testsuite should be able to perform client tests. This feature
is not supported by the existing testsuite. The new test framework implements features
that are needed for testing clients. This includes a feature that triggers a client to connect
to the testsuite so that automatic testing can be performed.

Message Validation. A testsuite has to check the content of the received messages
to determine whether a test completed successfully. The existing testsuite does this
by populating the ModifiableVariable fields of the messages that are part of the
ReceiveAction. After the handshake is executed it checks if the received value matches
the content assigned to the variable. This approach is not sufficiently flexible, since the
expected values like selected algorithms are not always known beforehand. Using this
setup it is not possible, for example, to set an allow- or deny list for received values.
Test cases using the new framework specify Java lambda functions for the validation.
Therefore, complex validation setups are possible.

3.2 Test Result 22

Debugability. The existing testsuite does not provide the possibility to execute sin-
gle test cases without changing the source code. This is especially important during
the development of the test cases to be able to determine quickly if the test case
works as expected. Using JUnit as testing framework for the developed testsuite pro-
vides GUI integration for many IDEs with the possibility to execute individual test
cases.

3.2 Test Result

Unit tests can obtain two possible test results: Success or failure. These two result
values are not sufficient to describe the test result of a TLS handshake, especially when
taking into account that a single test case can perform multiple handshakes with different
configurations as explained in Section 3.1. This means that each handshake can be seen
as a single unit test. The overall test result therefore depends on the results of each
performed handshake.

Assuming a test case expecting an alert message sent by the target in response to a
message violating the specification. For each handshake, derived from the test case, the
following four outcomes can occur. These can be modeled using three different result
values as detailed below.

1. The expected alert message is equal to the received alert message. In this case, the
target passes the test, so the result for the handshake is set to SUCCEEDED.

2. The target does not send an alert at all and does not close the connection. Since
this does not conform to the specification, the result is set to FAILED.

3. The expected alert is different from the received alert. This behavior does not
conform to the specification. But if both alert messages have the same severity
level, this behavior is acceptable in most cases. However, to indicate that the
target reacts differently than described by the specification, the result is set to
PARTIALLY_SUCCEEDED.

4. Instead of sending an alert, the target sends a TCP FIN packet and therefore closes
the connection. If a test case expects a fatal alert and receives such a packet, the
result for the handshake is also set to PARTIALLY_SUCCEEDED, since the handshake
is terminated.

Depending on the results of the individual handshakes, the result for the complete test
case is determined. Table 3.2 shows the possible results for a test case depending on the
result of two handshakes it performs. Besides the mentioned possible result values, the
test case can obtain a new result value, that is PARTIALLY_FAILED. The test case obtains
this value when at least one handshake SUCCEEDED and one handshake FAILED. A single
handshake should not obtain this value, since there is no sensible condition when this
value could be assigned to the handshake.

3.3 Test Framework 23

Handshake A ✗ ✗ ✓ ✓
Handshake B ✗ ✓/✓ ✓ ✓

Test Result ✗ ✗ ✓ ✓

✗FAILED
✗PARTIALLY_FAILED
✓PARTIALLY_SUCCEEDED
✓SUCCEEDED

Table 3.2: Possible test results depending on the results of two handshakes.

3.3 Test Framework

The test framework uses JUnit as a dependency and includes JUnit extensions, annotations
and superclasses which are used by the test cases of the testsuite. Therefore, it contains all
components necessary to model tests for the TLS protocol.

Using JUnit results in multiple benefits, for example, aspects like test scheduling and
execution are handled by the unit testing framework. In addition, most IDEs support
JUnit tests by offering a graphical user interface (GUI) to execute the tests and view the
results.

3.3.1 Command-Line Interface

The command-line interface provides the possibility to configure the framework without
changing the implementation. Thus, this is the key feature that allows the tool to
be used by users with no background knowledge on the implementation details. The
classes modeling the command-line interface are part of the config package of the
framework.

The interface is structured in the following way. The first argument group contains
options that apply to both, client and server tests. These include options like the
location where the test report should be saved or how many TLS handshakes should
be executed in parallel. A more special option is -timeoutActionScript. It takes any
shell command-line as an argument. The given command is executed when the last TLS
handshake was performed more than 20 seconds ago. It is intended to be used to restart
a target in case it gets stuck.

The general options are followed by the command argument describing the role of the tar-
get (server or client).At last, command-specific arguments can be appended, which are
used to configure the framework explicitly for client or server tests.

3.3 Test Framework 24

Server Tests. For server tests, hostname or IP address and the listening port need to be
provided. This is implemented using the TLS-Attacker ClientDelegate class. Therefore,
passing the -connect argument followed by the host and port configures the framework.
For example: -connect localhost:443.

Client Tests. For client tests, more arguments have to be provided, more precisely the
trigger for the client to initiate a new connection to the server running the testsuite. This is
the task of the -triggerScript option that followed by an executable and its arguments.
The specified executable is executed before every handshake, so that the client establishes
a connection to the testsuite. In addition to that, the -port option is required. It specifies
the port, the testsuite is listening for incoming connections.

3.3.2 Conditional Test Execution

Since TLS is a complex protocol with many parameters that are negotiated during the
handshake between the server and the client, it is not sensible to execute every test
case against every target. For example, test cases testing the implementation of a TLS
extension, assume that the target supports this extension. One solution would be to
execute the test, check that the extension is supported by the target, and terminate
the test successfully if it does not. However, this solution would bias the overall result,
as it is not possible to check whether the test terminated successfully or the extension
was not supported by the target later on. To be able to differentiate between these two
cases, the test should not be executed at all, when the requirement for the test is not
fulfilled.

To achieve the desired effect, JUnit extensions are used. The extensions implemented
in the test framework check if a test method is marked with a specific annotation
modeling the condition. The following annotations for conditional test execution are
supported.

• TestEndpoint

• TlsVersion

• KeyExchange

• MethodCondition

TestEndpoint

The TestEndpoint annotation controls whether a test method is executed for client
or server tests. Since this annotation takes an argument of the TestEndpointType
enum, the two meta-annotations ServerTest and ClientTest make this annotation
more convenient to use. These annotations can be used on classes, methods or both. In

3.3 Test Framework 25

the latter case the method annotation has a higher priority. If the annotation is not
specified at all, the test executes always.

Example usage:
@TestEndpoint(endpoint = TestEndpointType.CLIENT)

TlsVersion

If the TlsVersion annotation is present, the test is only executed, when the target
supports a specific TLS version. Since each version of TLS is specified in a different RFC,
it is only possible to specify one version at a time. Each test method or class is required
to be annotated with this annotation. If the annotation is specified at class and method
level, the method annotation takes priority. Since the specified version is represented by
the ProtocolVersion enum provided by TLS-Attacker, every TLS version included in
TLS-Attacker works with this extension.

To make the usage more convenient, the test framework provides the two already
annotated classes Tls12Test and Tls13Test. If a class containing test methods in-
herits from one of those two classes, it is not necessary to specify this annotation
again.

Example usage:
@TlsVersion(supported = ProtocolVersion.TLS12)

KeyExchange

A test method annotated with KeyExchange annotation is only executed, if the cipher
suites supported by the target, use a specified key exchange mode. These modes are RSA,
DH and ECDH. In addition, two special modes are available ALL12 and ALL13, which result
in the execution of the test for all TLS 1.2 or TLS 1.3 key exchange modes and cipher
suites, respectively. The following holds true.

𝐴𝐿𝐿12 ⇐⇒ {𝑅𝑆𝐴, 𝐷𝐻, 𝐸𝐶𝐷𝐻}
𝐴𝐿𝐿12 ∩ 𝐴𝐿𝐿13 = ∅

Although TLS 1.3 supports multiple types of groups for a key exchange, the specification
of the TLS 1.3 is more generic and independently from the used group. Therefore, the
only valid key exchange mode for TLS 1.3 is ALL13.

The annotation takes three arguments.

• KeyExchangeType[] supported
An array of the key exchange modes.

3.3 Test Framework 26

• boolean mergeSupportedWithClassSupported (optional, default false)
If the annotation is used at class and method level, setting this option to true,
merges the supported array from both annotations.

• boolean requiresServerKeyExchMsg (optional, default false)
Setting this option to true, executes the test only with cipher suites that requires
a server key exchange message.

The annotation can be specified at class or method level. Not specifying this annotation re-
sults in an implicit annotation with supported set to {ALL12, ALL13}.

Example usage:
@KeyExchange(supported = {KeyExchangeType.RSA, KeyExchangeType.DH})

MethodCondition

This annotation provides a generic way to disable a test case. It provides two parameters
that specify a class and a method that is executed before the test. The class parameter
is only needed if the method belongs to a different class than the currently executed
test method. Since parameters provided to annotations must be constant expressions, it
is only possible to specify the condition method as a string. The JUnit extension uses
reflection to call the specified method.

The condition method can optionally receive a single ExtensionContext object as
an argument. The extension context is provided by JUnit and contains informa-
tion about the current test execution. The return type must be an instance of the
ConditionEvaluationResult class. This class provides the two static methods .dis-
abled() and .enabled() as initializers.

1 @ExtendWith({MethodCondition.class})
2 class TestClass {
3 public ConditionEvaluationResult condition() {
4 return ConditionEvaluationResult.enabled("");
5 }
6

7 @Test
8 @MethodCondition(method = "condition")
9 public void test() {

10 System.out.println("This test is executed");
11 }
12 }

Listing 3: Example usage of the MethodCondition.

3.3 Test Framework 27

Test Case

AnnotatedStateContainer

AnnotatedState

Test Framework

Execute AnnotatedState /
TLS HandshakeWorkflowRunner

1. Execute

Information

TestConfig

Information

TestContext

TLS Server/Client

Validator
2. Validate

Figure 3.3: Interaction between the most important classes of the test framework.

It is possible to use this annotation on class and method level. If it is specified at both lev-
els, the test is only executed, if both methods return an enabled ConditionEvaluationRe-
sult. An example usage for this annotation can be found in Listing 3.

3.3.3 Architecture

To understand the test framework and later on the test cases that are part of the testsuite,
the most important classes and their tasks are described in this subsection. Figure 3.3
visualizes the interaction between those classes that are part of the framework and help
to understand the following sections.

• TestConfig

• TestContext

• TestRunner

• AnnotatedState

• AnnotatedStateContainer

• WorkflowRunner

• Validator

3.3 Test Framework 28

TestConfig

The TestConfig class extends the TLS-Attacker TLSDelegateConfig class and therefore
follows the convention established by other projects based on TLS-Attacker. Thus, it
stores the configuration that is determined by the command-line arguments passed to
the program.

In order to make use of existing code and business logic, the class delegates the parame-
ter resolution to the existing TLS-Attacker classes ServerDelegate and ClientDelegate.
Which one is used, depends on the type of the target that is tested.

TestContext

This class is a singleton class. It contains references to the following objects that have to be
made available from the test methods and the JUnit extensions.

• TestConfig

• TestSiteReport, is a serializable subclass of the SiteReport class provided by
the TLS-Scanner. It stores TLS properties supported by the target, for example,
supported TLS versions, cipher suites, elliptic curves, etc.

• ParallelExecutor, that is a ThreadPoolExecutor used to perform multiple TLS
handshakes in parallel.

In addition, the class manages the test results by storing them inside a map, referencing
each result with a unique identifier generated by JUnit.

The class exists to expose the mentioned objects as well as the result management APIs to
each test method and the JUnit extensions. This is only possible by utilizing a singleton
object since JUnit does not provide an API to inject objects into the test runtime
environment, which are created before the tests are started.

Making this class a singleton makes it impossible to execute the testsuite against multiple
targets in parallel because only one TestContext object can exist during runtime. If it
is necessary to test multiple targets in parallel, multiple instances of the testsuite have to
be started.

TestRunner

The TestRunner class is executed first and is responsible for setting up the framework.
First it waits for the target to be available, starts the preparation phase that discovers
which TLS properties the target supports, and after that the testsuite execution phase is
started (see Section 3.3.5).

3.3 Test Framework 29

AnnotatedState

This class contains a reference to a TLS-Attacker State object and annotates it with
additional information. Therefore, an AnnotatedState object represents a single TLS
handshake. The additional information are about the connection, like the source and
destination ports, as well as a start and end timestamps of the handshake. It also
stores the value of the result described in Section 3.2 that is part of the TestStatus
enum.

For each AnnotatedState a unique identifier is generated by hashing the class- and
method name of the test case it belongs to, as well as information describing the test case
that is independent of the result. Therefore, each object is associated with a deterministic
unique identifier. This results in the possibility to compare the result of each TLS
handshake between multiple executions of the testsuite against the same or different
targets.

AnnotatedStateContainer

Each test case that performs a handshake is associated with an AnnotatedState-
Container. This class contains a list of AnnotatedState objects, each of them describing
a handshake using the State class of TLS-Attacker. It also contains additional infor-
mation about the test result, for example, the test result value, how many handshakes
failed, and information about the test method itself.

Furthermore, a container exposes a validate function that takes a lambda function
consuming an AnnotatedState as an argument. The validation process iterates over
the list of AnnotatedState objects and executes the provided lambda function for each
state. The execution of this function determines the result of the executed handshake
and therefore has an impact on the result of the complete test case, respectively the
result of the AnnotatedStateContainer.

The lambda function provides the result for a single handshake in two possible ways. If
it throws an exception or error using, for example, the assert... functions provided
by JUnit to validate values of received messages, the framework automatically sets the
result of the handshake to FAILED. If the function completes successfully the result is
automatically set to SUCCEEDED. As explained in Section 3.2, a handshake can also obtain
the test result value PARTIALLY_SUCCEEDED. This value must be set manually by the
lambda function using the setStatus function of the AnnotatedState object passed to
the lambda function.

The overall test result is set by the framework automatically, depending on the result of
each handshake.

3.3 Test Framework 30

WorkflowRunner

An instance of this class is injected into each test method using a ParameterResolver JU-
nit extension interface, implemented by the WorkflowRunnerResolver class. This object
is responsible for executing TLS handshakes, more specifically TLS-Attacker State ob-
jects, that are assembled in the test methods. In addition, it provides configuration options
and the business logic for the test derivation (Section 3.3.4).

Test methods usually configure the derivation at first using public configuration prop-
erties that are explained later on, and finally call the execute function of this class.
This overloaded function takes a WorkflowTrace or AnnotatedStateContainer object,
performs the derivation and dispatches the resulting list of State objects to the shared
ParallelExecutor of the TestContext.

In addition, this class provides a set of generateWorkflowTrace functions to generate
prepared WorkflowTrace objects using the WorkflowConfigurationFactory class pro-
vided by TLS-Attacker. Although the return value of these functions is a WorkflowTrace
object, it is important to note that this trace is empty, since the exact configuration of the
handshake can only be determined during the derivation phase. To be still able to modify
the prepared workflow traces, the WorkflowRunner object provides a stateModifier
function field. A function assigned to this field modifies each AnnotatedState object ob-
tained by the derivation. It can either return a new AnnotatedState object to replace the
existing one or null, to use the modified AnnotatedState.

Validator

The Validator class provides static functions that are intended to be used as lambda func-
tions that are passed to the validate function of the AnnotatedStateContainer.

Since many test cases require the same checks to validate the performed handshakes, this
class reduces the amount of duplicated code across test cases. A common check is, for
example, if the target responded with a fatal alert.

3.3.4 Test Derivation

Test derivation is the process the framework performs to automatically generate new
State objects respectively handshake configurations based on a provided State. This
aims to force the target to negotiate different TLS parameters and to apply fragmentation
to the sent packets.

The framework only provides automated derivations modes for changing the negotiated
cipher suite and for packet fragmentation. The derivation is optional and configured
using options exposed by the WorkflowRunner object that is passed as an argument into
each test method and used for the handshake execution. Instead of using the automated

3.3 Test Framework 31

derivation process, it is also possible to create multiple handshakes using for-loops or
other control structures inside the test method.

The derivation process is visualized in Figure 3.4. A WorkflowTrace specifying the
handshake is assembled in the test method and executed using the execute function of
the WorkflowRunner object. Executing a WorkflowTrace also runs the prepare function
that performs the derivation in order to force the target to negotiate a specific cipher
suite. The function returns an AnnotatedStateContainer containing all State objects
that are the result of the derivation process. The container is passed to the execute
function that performs the fragmentation derivation and executes the State objects
contained in the container.

Skipping
TLS parameter

derivation

Test method

execute(WorkflowTrace)
or

execute(WorkflowTrace, Config)

execute(container)
perform fragmentation

derivation

AnnotatedStateContainer container

prepare(...)
perform TLS parameter

derivation

Execute states inside the
state container.

Figure 3.4: Derivation process of State objects.

If the test case needs to generate multiple WorkflowTrace or Config objects with different
configurations, the test method triggers the derivation process manually (prepare func-
tion), merges multiple AnnotatedStateContainer objects into a single container and fi-
nally calls the execute function with the final container as an argument.

3.3 Test Framework 32

The test framework supports three kinds of automated test case derivations.

• Negotiated Cipher Suite

• TLS record fragmentation

• TCP packet fragmentation

3.3.4.1 Negotiated Cipher Suite

As it is determined during the preparation phase which cipher suites a target supports,
the test framework can use this information during the derivation process to create new
handshake configurations that replace the supported and selected cipher suites that TLS-
Attacker uses. This is done by altering the Config object.

In addition, the business logic of this derivation considers the key exchange modes
that are specified by the appropriate annotation (Section 3.3.2). If the test method
is only suited for an RSA key exchange, the derivation only considers RSA cipher
suites.

How the cipher suite configuration is changed can be controlled using following four
different configuration flags, that are public boolean fields of the WorkflowRunner
object.

replaceSupportedCiphersuites. This option only affects server tests. When it is set
to true, the framework generates a State and sets the defaultClientSupported-
Ciphersuites list of the TLS-Attacker config to a single cipher suite. Only cipher suites
are considered are supported by the server and that are a valid regarding the KeyExchange
annotation that is assigned to the test method.

appendEachSupportedCiphersuiteToClientSupported. This option only affects server
tests as well. Setting this option to true causes each cipher suite supported by the server
and test method to be appended to the defaultClientSupportedCiphersuites list.
Only cipher suites that are not already part of the list are appended.

replaceSelectedCiphersuite. This option only affects client tests. Setting this option
to true results in the generation of a State object for every cipher suite the client
and the test method supports. This sets the config options defaultServerSupported-
Ciphersuites and defaultSelectedCiphersuite to the same value, that is a single
cipher suite.

3.3 Test Framework 33

respectConfigSupportedCiphersuites. This option affects client and server tests and
only works in combination with one of the replace... configuration options. When this
option is set to true, the framework sets the supported and selected cipher suite only to
a cipher suite that is included in the default client or server supported cipher suite list
and is supported by the target.

3.3.4.2 Fragmentation

In addition to the derivation based on changing the cipher suite, the framework also
derives new handshake configurations by applying fragmentation. The two available frag-
mentation modes are based on TLS record fragmentation and TCP packet fragmentation.
By default, this kind of derivation is enabled, since it is independent of negotiated or
supported TLS parameters.

The derivation is performed right before the handshakes are executed in the execute(An-
notatedStateContainer) function. Therefore, if both fragmentation modes are enabled,
the amount of states inside the container is tripled. As for derivations based on cipher
suites, the configuration is controlled by using public boolean fields of the Workflow-
Runner class.

useRecordFragmentationDerivation. When this option is set to true, for every state
inside the container passed to the execute function, a new state is generated, where the
DefaultMaxRecordData of the Config object is set to 50. That means that every TLS
record larger than 50 bytes is split into multiple records, each with a size of 50 bytes.
Setting this to a deterministic static value ensures the comparability between the test
cases of multiple testsuite executions. In addition, 50 bytes is a small enough value to
ensure that records are actually fragmented.

useTCPFragmentationDerivation. When this option is set to true, the transport han-
dler is changed to TCP_FRAGMENTATION. This transport handler splits sending messages
into three chunks of equal size and flushes the output stream after each chunk.

3.3.5 Testsuite Execution

To start the execution of the testsuite, four lines of code are necessary (Listing 4),
excluding exception handling. At first a new TestContext object is created (line 3), after
that, the testsuite sets the TLS versions it supports (line 4) and triggers the parsing of
the command-line arguments (line 8). Finally, the runTests method of the TestRunner
instance is executed (line 9).

Calling the runTests function, causes the execution of the preparation and execution
phase.

3.3 Test Framework 34

1 public class Main {
2 public static void main(String[] args) {
3 TestContext testContext = new TestContext();
4 testContext.getConfig().setSupportedVersions(
5 ProtocolVersion.TLS12,
6 ProtocolVersion.TLS13
7);
8 testContext.getConfig().parse(args);
9 testContext.getTestRunner().runTests(Main.class);

10 }
11 }

Listing 4: Code used by the testsuite to setup the test framework and start the tests.

Preparation Phase

During the preparation phase, the framework executes the TLS-Scanner for server
tests. The TLS-Scanner performs multiple handshakes to analyze the server including
configuration checks such as such supported cipher suites, extensions, elliptic curves
and TLS versions. The results are stored using the TestSiteReport class. This class
provides a static method fromSiteReport that only extracts necessary properties from
a SiteReport object provided by the TLS-Scanner, with the goal to obtain a serializable
object.

The TestSiteReport object is part of the TestContext singleton object and is used
to evaluate the conditional test execution extensions. For the preparation phase, the
scanner does not scan for known vulnerabilities to increase the speed, especially for cases
where servers can only be scanned single-threaded.

Because the TLS-Scanner only supports scanning servers, it can not be used for the
preparation phase for client tests. The test framework implements its own minimalistic
Scanner instead. In theory, the client includes all the algorithms, cipher suites, TLS
versions and extensions it supports in the ClientHello message. However, this might
not be the case for all implementations, since implementation failures can lead to the
problem, that a client does not properly advertise every algorithm it supports. The
minimal client scanner compensates this problem at least for the cipher suites. It iterates
through all cipher suites that TLS-Attacker supports and tries to perform a handshake.
If the handshake is successful, the cipher suite is considered to be supported by the client.
Other information like supported versions, elliptic curves, signature and hash algorithms
are extracted from the ClientHello message under the assumption, that the client only
supports the advertised parameters. All of the parameters are also stored inside the
TestSiteReport class.

3.3 Test Framework 35

To improve subsequent executions of the test suite against the same target, the Test-
SiteReport is saved to a file acting as a cache. Whenever the caching file exists, it is
deserialized into a TestSiteReport and the preparation phase is skipped. Using the
-ignoreCache option, the cache can be bypassed.

Testsuite Execution Phase

The execution phase starts right after the end of the preparation phase. In this phase
JUnit is instructed to scan for all test methods included in the Java package to which the
class object, provided to the runTests function, belongs to (Listing 4, line 9). Finally,
the discovered test methods are executed.

3.3.6 Modeling a Test Case

A test case is a Java function that should be at least annotated with JUnit’s @Test
annotation or the provided @TlsTest annotation to be discoverable by the JUnit test
engine. The function can take an optional WorkflowRunner object as an argument that
provides APIs to perform TLS handshakes. The @TlsTest annotation takes up to three
arguments that describe the test case.

• String description

• SeverityLevel securitySeverity
(optional, default INFORMATIONAL)

• SeverityLevel interoperabilitySeverity
(optional, default INFORMATIONAL)

Description. The description string describes the test case in order to provide an
overview of the functionality that is addressed by this test.

SecuritySeverity. The securitySeverity describes the impact on the security of the
target in case the test fails.

InteroperabilitySeverity. Similar to the securitySeverity this parameter specifies the
impact on the interoperability of the target with other TLS servers or clients in case the
test fails.

The severity level is modeled by the SeverityLevel enum that has five levels in total. The
higher the level, the higher the is the possible impact on the security or interoperability.
The levels are:

• SeverityLevel.INFORMATIONAL

3.3 Test Framework 36

• SeverityLevel.LOW

• SeverityLevel.MEDIUM

• SeverityLevel.HIGH

• SeverityLevel.CRITICAL

Each test case performing a TLS handshake, roughly consists of three sections. Listing 5
shows a simple example of a server test that sends an unknown cipher suite in the Clien-
tHello message and checks if the server sent a ServerHelloDone message.

1 @RFC(number = 5246, section = "7.4.1.2. Client Hello")
2 @ServerTest
3 public class ClientHello extends Tls12Test {
4

5 @TlsTest(description = "If the list contains cipher suites the server
does not recognize, support, or wish to use, the server MUST
ignore those cipher suites, and process the remaining ones as
usual.", interoperabilitySeverity = SeverityLevel.CRITICAL)

→˓

→˓

→˓

6 public void unknownCipherSuite(WorkflowRunner runner) {
7 runner.replaceSupportedCiphersuites = true;
8

9 Config c = this.getConfig();
10

11 ClientHelloMessage clientHelloMessage = new ClientHelloMessage(c);
12 clientHelloMessage.setCipherSuites(Modifiable.insert(new

byte[]{(byte)0xfe, 0x00}, 0));→˓

13

14 WorkflowTrace workflowTrace = new WorkflowTrace();
15 workflowTrace.addTlsActions(
16 new SendAction(clientHelloMessage),
17 new ReceiveTillAction(new ServerHelloDoneMessage())
18);
19

20 runner.execute(workflowTrace,
c).validateFinal(Validator::executedAsPlanned);→˓

21 }
22 }

Listing 5: Simple testcase

The first section configures the WorkflowRunner object, more precisely the test derivation
mode (line 7). This instructs the test case derivation logic to create a TLS handshake

3.3 Test Framework 37

for every cipher suite the server supports. The derived handshakes only send one cipher
suite in the ClientHello cipher suite list.

In lines 9 to 19 a Config object and a WorkflowTrace with two actions are created. The
first action sends the ClientHello message to the server. Before the message is sent, the
modification that is attached to the cipher suites field of the message is executed. This
modification adds an unspecified cipher suite to the beginning of the list in the ClientHello
message. The second action receives messages from the server until a ServerHelloDone
message is encountered. When such a message is received, it is safe to assume that the
server selected the cipher suite it supports.

Finally, the assembled WorkflowTrace object is executed (line 21). The lambda function
passed to the validateFinal function checks for every generated handshake whether
the actions of the WorkflowTrace were executed successfully. If this is not the case, the
function throws an exception. Depending on the result of each handshake, the overall test
result is set by the framework as described in Section 3.2.

3.3.7 GUI support in IDEs

Since every test case is a regular JUnit test, it is possible to start test cases right from
the IDE. This is especially useful during the development of new test cases. Launching
a test case from the GUI results in a different control flow compared to launching
the test suite from the console using the command-line arguments. Instead, the IDE
launches the test case directly without calling the runTests function of the TestRunner
class, which triggers the preparation phase, configures JUnit and executes the test
cases.

3.3.7.1 Preparation Phase

To work around these limitations, the first conditional test execution JUnit extension
checks if the test framework is already configured. If this is not the case, it triggers the
preparation phase. However, this does not configure JUnit itself, which means that the
tests are executed single-threaded and the framework does not create a report after the
execution of the tests. To achieve parallel test execution and the creation of a report,
two files have to be created inside the resources folder of the project containing the
tests.

resources
junit-platform.properties
META-INF

services
org.junit.platform.launcher.TestExecutionListener

3.3 Test Framework 38

For parallel test execution the junit-platform.properties file must have the content
of Listing 6. The report is generated if the org.junit.platform.launcher.Test-
ExecutionListener file has the content of Listing 7. The latter contains a reference to
the class implementing the TestExecutionListener interface provided by JUnit, which
contains a callback function that is executed after all tests are finished. This function is
used to generate the final test report.

1 junit.jupiter.execution.parallel.enabled = true
2 junit.jupiter.execution.parallel.mode.default = concurrent

Listing 6: Content of the junit-platform.properties file to achieve parallel test exe-
cution.

1 de.rub.nds.tlstest.framework.reporting.ExecutionListener

Listing 7: Content of the org.junit.platform.launcher.TestExecutionListener file
for test report generation.

3.3.7.2 Command-Line Arguments

Another feature that works differently when tests are executed using the GUI features
of an IDE, is the way command-line arguments work. The framework provides the
features to develop tests for clients and servers, but it is only possible to specify a single
set of command-line arguments. Instead of using these, the framework looks up the
environment variables COMMAND_SERVER and COMMAND_CLIENT. These variables should
contain the command-line arguments for the server respectively client tests. Dependent
on the kind of test being executed, the framework looks up the corresponding variable
and configures itself by parsing the value of the variables as command-line arguments. If
a test is executed that works for client and server tests and both environment variables
are defined, the client arguments take precedence.

3.3.8 Test Report

After the test execution, a test report is generated. The test report includes information
on the amount of successful and failed test cases, which tests succeeded and failed, as
well as the test result of every handshake.

The test report is generated by serializing the AnnotatedStateContainer objects created
for each test case and stored inside the shared TestContext object during runtime. The
output format and output file location are determined by the given command-line
arguments. The format of the output file can be either a JSON or XML file, containing
the serialized objects.

3.4 Testsuite 39

The information attached to each AnnotatedState object provide the possibility to find
each performed handshake inside recorded network traffic. This allows the examination
of every handshake with an interesting result on byte level.

3.4 Testsuite

The developed testsuite targets server and client implementations for TLS versions 1.2
and 1.3 and contains 175 test cases in total that are distributed as shown in Table 3.5.
The implemented tests are based on the specifications from 11 different RFCs, addressing
both TLS 1.2 and TLS 1.3. The repository contains an annotated PDF file for each
RFC with test coverage, highlighting lines in green that are tested in a test case, lines
that are not tested in orange and lines where a server or client test is missing in
blue .

TLS 1.2 TLS 1.3 Total
Server 49 33 82
Client 31 38 69
Both 17 7 24
Total 97 78 175

Table 3.5: Distribution of the developed test cases.

3.4.1 Implemented Tests

The focus of the implemented tests is to provide as much coverage of the underlying
specifications as possible for features most clients and servers support. As a foundation,
the test cases developed by Ebert [18] are used. These tests are migrated to the new
more flexible test framework.

The existing testsuite containing 42 TLS 1.2 server tests, is extended by tests targeting
TLS 1.3 based on RFC 8446 [25]. In addition, client tests targeting TLS 1.2 and TLS 1.3
and further tests for already covered RFCs are added as well.

The tests included in the testsuite currently do not address every feature of TLS. For TLS
1.2, features like session resumption and renegotiation are not covered. In case of TLS
1.3, there are no tests available covering the 0-RTT handshake or early data. In addition,
there is no test implemented that covers client authentication or certificate validation.
These topics are skipped due to time constraints and because these features require
special configurations of the server and clients under test. However, the test framework
is prepared to handle tests covering these features.

There are two categories of tests implemented.

1. RFC Compliance Tests

3.4 Testsuite 40

2. Length Field Tests

3.4.1.1 RFC Compliance Tests

Compliance tests check if the behavior of the target conforms to the specification. To
be able to implement these tests, it is required to read the RFCs and pay attention to
the signal word MUST. There are basically two kinds of tests. In some cases, it makes
sense to develop a test for clients and servers and in other cases, it only makes sense to
write a test for either the server- or the client implementation, as the following examples
show.

The TLS 1.2 RFC contains the following sentence: “Recipients of Finished messages
MUST verify that the contents are correct.” [37, Section 7.4.9]. Since both parties send
and receive a Finished message during the handshake, it is sensible to implement the test
case for both, client and server.

On the other hand, the TLS 1.3 specification contains the following sentence: “If this
[the supported versions] extension is not present, servers which are compliant with this
specification and which also support TLS 1.2 MUST negotiate TLS 1.2 or prior as
specified in [RFC5246].” [25, Section 4.2.1]. For this example, only a server test makes
sense because it is only defined how the server has to react. In this case, the test is
only executed if the server supports TLS 1.2 and TLS 1.3. This test sends a ClientHello
without the supported versions extension. If the server negotiates TLS 1.2, the test is
successful.

Besides categorizing the test case on the targets, which is useful for developing, it is also
possible to categorize them based on the results. This system is used for the evaluation
in Section 4.1.

Expected Alert ̸= Received Alert Many of the tests violate a condition of the specifi-
cation on purpose and check if they receive the alert message that is specified. Many
implementations send different alert messages than specified or no alert message at all.
Violating such a specification can result in the fact that an attacker can use the server as
an oracle. A widely known attack based on such an oracle is, for example, the padding
oracle attack [19].

Expected Handshake Termination The test cases that belong to this category violate
a specification described in the RFC. In contrast to the previous category, the RFC does
not specify the response of the receiving peer. It only specifies that a message MUST
or MUST NOT fulfill certain criteria. The test cases violate the criteria on purpose
and expect a handshake termination. Not implementing the specification correctly and
parsing the messages according to the specification, can lead to side channels that can be
used as an oracle and might result in attacks.

3.4 Testsuite 41

Expected different Behavior Test cases under this category check if the sever behaves
as expected. The expected behavior excludes sending alert messages, since this is already
covered by the first category.

The following RFCs are covered by tests.

• RFC 4492 [24] – Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS)

• RFC 5246 [37] – The Transport Layer Security (TLS) Protocol Version 1.2

• RFC 6066 [20] – Transport Layer Security (TLS) Extensions: Extension Definitions

• RFC 6176 [38] – Prohibiting Secure Sockets Layer (SSL) Version 2.0

• RFC 7366 [21] – Encrypt-then-MAC for Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS)

• RFC 7465 [39] – Prohibiting RC4 Cipher Suites

• RFC 7507 [40] TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing
Protocol Downgrade Attacks

• RFC 7568 [41] – Deprecating Secure Sockets Layer Version 3.0

• RFC 7685 [22] – A Transport Layer Security (TLS) ClientHello Padding Extension

• RFC 8446 [25] – The Transport Layer Security (TLS) Protocol Version 1.3

• RFC 8701 [42] – Applying Generate Random Extensions And Sustain Extensibility
(GREASE) to TLS Extensibility

3.4.1.2 Length Field Tests

These tests are implemented in the LengthFieldTest class. This includes four tests,
addressing TLS 1.2 and TLS 1.3 clients and servers. As described in Section 2.1, most sec-
tions of TLS messages are preceded by a length value that specifies how many bytes of the
transmitted data belong to the specific section. If this value is wrong, the implementation
can not parse the message, thus the handshake will fail.

In TLS-Attacker, every length value is a modifiable variable and annotated with the
ModifiableVariableProperty annotation. The test cases create multiple workflows,
each modifying a single length value by iterating through every accordingly anno-
tated field. The test is successful if the handshake could not be completed success-
fully.

3.5 Report Analyzer 42

3.5 Report Analyzer

As mentioned in Section 3.3.8 the output of the execution of the testsuite is a JSON file,
which contains the results for each test case as well as details and the result for every
performed TLS handshake.

The report analyzer provides a way to quickly analyze which test failed or what happened
in a specific handshake. It is implemented as a web application, based on VueJS [43] in
the frontend and a Node.js [44] Express [45] server with a MongoDB [46] database in the
backend.

The application provides an interface to upload the test report JSON file, a PCAP file
containing the network communication between the testsuite and the target, as well as
the keylog file, which contains the premaster secrets of all handshakes. The PCAP and
keylog files are stored in the database as is, while the JSON file containing the results is
processed further. Figure 3.6 shows how the uploaded files are stored inside MongoDB
collections and the relations between these.

Upload

Database

testcontainers

testresults

testresultstates

Test report PCAP file

keylogfilepcap

Keylog file

Figure 3.6: Upload process and processing of the documents into MongoDB database
collections.

The information from the test report JSON file are stored across three different collections,
as shown in Figure 3.6.

1. testcontainers
Contains information about the execution of the testsuite. That means for each

3.5 Report Analyzer 43

upload, one document inside this collection exists. Each document contains a list
of references to documents inside the testresults collection.

2. testresults
Contains a document for each test method. The data include but are not limited to
the severity level, method name, the result, a stacktrace in case of a failed test as
well as a list of references to documents inside the testresultstates collection.

3. testresultstates
Contains a document for every performed handshake and its properties, such as
the result, source and destination port and timestamps.

Furthermore, the application provides two main views for the visualization of the test
results.

• Analyzer View

• State View

Analyzer View

This view provides the option to load and visualize test reports from the database (Fig-
ure A.2). The test methods and their results are displayed in a table. The leftmost column
shows the test methods grouped by their Java class whereas the remaining columns show
the result of each test method. The icons in front of the method name visualize the security
and interoperability severity level of the test method.

There are some hidden interactions available that are explained in the following.

• Hovering over the result icon reveals how many handshakes were performed by this
test method.

• Clicking on the method name shows a popup with additional information about
the test case.

• Clicking on a table row of a test that performed TLS handshakes, navigates to the
state view.

State View

The State view provides an overview over the executed TLS-Attacker State objects, each
representing a TLS handshake, that belongs to a single test method (Figure A.3). The
view is also presented as a table, where the leftmost column shows the deterministic
unique identifier of the handshake, that identifies the same handshake configuration
across different executions of the testsuite.

To retrieve specific information about a single handshake, it is possible to click on the result

3.5 Report Analyzer 44

icon, or to click on the unique identifier to get information for every handshake in the row or
the column header for every handshake in the selected column.

The information popup provides the JSON excerpt from the test report as well as
two buttons. One button extracts the sent messages for the given handshake from
the PCAP dump and shows a view similar to Wireshark [47]. The other button can
be used to download a PCAP file that only contains the messages belonging to the
selected handshake. This file can be opened with Wireshark for further packet inspec-
tion.

The PCAP download/visualization features are implemented as follows. The backend
fetches the uploaded PCAP file belonging to the handshake from the database and uses
tcpdump [48] first to extract only packets that are sent from the source or destination
ports that are part of the report data. Next, tshark, a program that is part of Wireshark,
is used to filter the remaining packets based on the time when the handshake started
and ended. The output of tshark is similar to the representation in Wireshark and is
displayed in the frontend.

3.5.1 Score Calculation

Another feature that is currently implemented by the report analyzer is the calculation
of a test score, that makes it possible to compare test results. The calculation depends
on the severity levels that are assigned to each test method and their result. Therefore,
two scores are calculated. A security score and an interoperability score. Only tests
that are not disabled during the testsuite execution are considered in the calculation
process.

Depending on the severity level, a test case earns up to a specified number of points.
The higher the severity the more points are available. Depending on the test result,
the amount of points is lowered. For a succeeded test, 100% of the available points are
added to the reached score counter. A failed test does not add any points to the score. A
PARTIALLY_SUCCEEDED test earns 80% of the points whereas a PARTIALLY_FAILED test
earns only 20% of the points. This results in the matrix shown in Table 3.7. The purpose
of this matrix is that tests with a higher severity contribute more to the score than lower
severity tests. If an implementation fails at a low number of high severity tests, it might
have a lower score than an implementation that fails at more tests of the lowest severity
level.

To achieve comparability between two testsuite executions against different implementa-
tions, the percentage of the reached score is used.

3.6 TLS-Docker-Library 45

TestResult

SeverityLevel ✓ ✓ ✗ ✗

CRITICAL 100 80 20 0
HIGH 80 64 16 0
MEDIUM 60 48 12 0
LOW 40 32 8 0
INFORMATIONAL 20 16 4 0

✗FAILED
✗PARTIALLY_FAILED
✓PARTIALLY_SUCCEEDED
✓SUCCEEDED

Table 3.7: Scoring system. Shows the score added to the scoring counter depending on
the severity level and the test result.

3.6 TLS-Docker-Library

The TLS-Docker-Library [33] is an existing project, as described in Section 2.4. To
be able to analyze many TLS implementations, the library is improved as part of this
thesis.

The central aspect of this project is the collection of Dockerfiles that include build instruc-
tions for 23 different TLS implementations, configured as server or client.

3.6.1 Docker Images – Build System

To build the Docker images using these Dockerfiles, a collection of shell scripts exists,
that start the build process. The current build system is limited in its capabilities.
For example, it is not possible to selectively build a specific version of a certain TLS
implementation. Moreover, it is not optimized for a multi-processor system. Therefore,
building multiple images in parallel is not possible. Thus, building over 1000 images
without parallelization takes more than a day. To work around those limitations, the
build system is improved by the following features.

The optimized build system provides a new Python script with a command-line interface
and useful logging. This allows to debug which builds succeeded and why a build failed.
The script only logs the name of the image and the status of the build process to the
console, thereby providing a quick overview of how many builds succeeded or failed. In
addition, it creates a log file containing detailed information about failed builds, so that
occurred problems can be debugged. Using this script also allows to selectively build
an image of specific versions of a specific implementation and to build multiple Docker
images in parallel using Docker BuildKit [49]. Docker BuildKit parallelizes multiple

3.6 TLS-Docker-Library 46

independent stages of a Dockerfile. In addition, the script executes multiple Docker builds
in parallel. This results in higher utilization of multi-processor systems and therefore
reduces the build time for the Docker images significantly. On a system with 24 cores
and execution 16 Docker build tasks in parallel, 1430 Docker images could be built in
6.75 hours.

The main reason for failed builds was, that the used Docker base image was not pinned
to a specific version. The implementations are compiled from source code and depend
on other packages, such as compilers and other libraries. Since the project was created
in 2017 by Ebert [18], the Docker base image, alpine-linux, has been updated several
times. These updates of the image also resulted in updated dependencies. Thus, the
build process failed for many Docker images using the latest version of the alpine-linux
image. Setting the version of the base image to 3.6, which was the most recent version in
2017, fixed most of the builds.

In addition, new versions for the implementations are added that are evaluated in
Section 4.1. All in all, these improvements result in 1430 working Docker images for 23
TLS implementations that can be built using the library.

3.6.2 Docker Images – Entrypoints

Additional improvements are implemented regarding the way TLS client and server
executables are started. Especially client tests depend on the possibility to trigger the
client to initiate a connection to the server executing the tests. Some server implementa-
tions, for example, BoringSSL below version 2987 terminate after a single handshake is
performed. Restarting the Docker container for every single handshake is inefficient and
slow when many handshakes need to be performed.

To address this problem, two small wrapper applications are implemented written in Go
for client and server applications, respectively. The benefit of using Go for this task is
that the language provides many features and compiles to native executables. Executing
these do not require an installed runtime environment or interpreter. This keeps the size
of the built Docker images small.

The wrapper applications take an infinite number of arguments, treating the first argument
as a program and the remaining as arguments for the program. During runtime, the
specified program is executed with its arguments. The execution strategy depends on
the type of the image (server or client). In addition to that, an HTTP server providing
a REST API is created by the wrapper application listening on port 8090. When the
HTTP server receives a GET request on the /shutdown endpoint, the application is
terminated.

Client Images. The specified program, in this case a TLS client implementation, is
executed when the wrapper application is started and every time a GET request is sent

3.6 TLS-Docker-Library 47

to the /trigger endpoint.

Server Images. The specified program, in this case a TLS server implementation, is
executed in an infinite loop which starts when the wrapper application is started. This is
useful for server applications terminating after one handshake. In case of an unexpected
crash of the server, the TCP port used by the server might still be used by the operating
system. Therefore, the server terminates immediately again until the port is released.
This behavior is undesired as it is time-consuming. To accelerate this process, the wrapper
application only tries to restart the server 5 times. If the server always terminates in
less than 100ms, the wrapper application terminates as well. In this case, restarting
the Docker container is faster than waiting for the operating system to release the
port.

3.6.3 Java Library

The Java library of the TLS-Docker-Library provides an API to instantiate Docker
containers that run a TLS implementation. The API is improved as part of this thesis, in
order to be able to customize the configuration, like network settings or resource limits.
The getTlsClient or getTlsServer functions return a DockerTlsInstance object.
This object provides a getContainerConfig function returning a ContainerConfig that
is part of the Docker library provided by Spotify [50] to control the Docker daemon.
The ContainterConfig object can be modified before the container is started. This
change makes the usage of the library more flexible for other projects that depend on
it.

Furthermore, the profiles are updated containing the command-line arguments that
are needed for the execution of the TLS implementations. This includes adding a
new parameter type INSECURE for client profiles. Using this parameter disables the
server certificate validation of the client. Setting the insecureConnection boolean
value of the DockerTlsInstance object to true launches the client application of
an implementation with the INSECURE and without the CA_CERTIFICATE parameters.

4 Evaluation

The improvements described in Section 3.6 result in more than 1000 TLS implementation
Docker containers of 23 different implementations that are analyzed in this chapter with
the developed testsuite.

4.1 Setup

Although there are Docker images for 23 implementations available in the Docker library,
it is not possible to analyze every implementation, because some of them are less tolerant
regarding TLS hello messages. Thus, the TLS-Scanner that runs before the testsuite for
server tests can not scan every implementation. This means that it is not possible to
detect the supported cipher suites and other algorithms. However, this is required by
the testsuite. The same applies to clients. Although the client initiates the connection
with a ClientHello message and the server only needs to select the correct algorithms,
the same problems appear for clients.

Solving these problems should be possible by changing the values of the used TLS-
Attacker Config. This results in different values for the hello messages that work for the
implementation, so that and the handshakes can be performed. This is out of scope for
this thesis, because it would require a lot of time using a trial and error approach that
changes a different value every time to find a working setup for every implementation.
Since the majority of implementations work with the default configuration, the benefit of
fixing those problems is small.

Table 4.1 lists the different implementations where at least the server or client application
could be tested. The Docker images available for these implementations are up-to-date.
The table is sorted by the popularity of their GitHub repositories. Implementations
that do not provide an executable server or client application are not considered for the
evaluation, to exclude implementation failures by developers who are not familiar with
the library.

The main repository of BoringSSL and NSS is not available on GitHub, therefore,
the numbers are not available. Since these implementations power the TLS stack
of Google Chrome and Firefox, respectively, they are also considered as very popu-
lar.

All implementations are tested with their default configuration using the sample appli-
cations that are the result of the compilation of the implementation. For tests against

4.1 Setup 49

Repository Stars Forks Open Issues Language
OpenSSL 13192 5860 1329 C
s2n 3731 495 355 C
mbed TLS 2460 1410 638 C
Rustls ∙ 1918 174 56 Rust
Botan 1423 348 109 C++
LibreSSL 925 203 52 C
wolfSSL ∘ 883 376 83 C
GnuTLS 248 22 201 C
MatrixSSL ∘ 135 33 10 C
tlslite-ng ∙ 98 41 61 Python
BearSSL ∙ 16 6 0 C
BoringSSL n.a. n.a. n.a. C/C++
NSS n.a. n.a. n.a. C/C++

∙ Only servers could be tested.
∘ Only clients could be tested.

Table 4.1: Evaluated TLS implementations sorted by their GitHub repository popularity,
as of 19th June 2020.

implementations running in client mode, the certificate validation for server certifi-
cates is disabled. TLS server implementations are configured using a 2048-bit RSA
certificate. Therefore, cipher suites that depend on a non-RSA server key can not be
negotiated.

The tests are performed using the TLS-Testsuite-Large-Scale-Evaluator [51]. This small
project manages the execution of the testsuite and the Docker containers running the TLS
implementation. It provides a command-line interface that allows specifying which TLS
implementation and version is tested. For the evaluation, the testsuite is also running
inside a Docker container. The startup script for the testsuite container starts an instance
of tcpdump to capture the network traffic between the testsuite and the target as well as
the testsuite itself.

The evaluator is capable of testing multiple targets in parallel. Each testrun tests
one specific version of an implementation, that is one TLS implementation Docker
container. Therefore, the testsuite Docker container and the TLS implementation
container have to be started. The evaluator coordinates the start of the Docker containers
and monitors the execution. A testrun is considered as finished when the testsuite
container terminates. Until this event occurs, the evaluator monitors the status of the
TLS implementation container in a separate thread and restarts the implementation
container if it terminates before the testsuite container. The restart mechanism could
also be achieved using a Docker feature, but during the tests this was not reliable.
Therefore, polling the container status and restarting it when necessary is faster and
more reliable.

https://github.com/openssl/openssl
https://github.com/ctz/rustls
https://github.com/ARMmbed/mbedtls
https://github.com/ctz/rustls
https://github.com/randombit/botan
https://github.com/libressl-portable/portable
https://github.com/wolfSSL/wolfssl
https://github.com/gnutls/gnutls
https://github.com/matrixssl/matrixssl
https://github.com/tomato42/tlslite-ng
https://github.com/nogoegst/bearssl
https://boringssl.googlesource.com/boringssl
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

4.2 Results 50

To isolate the network traffic for each testrun, a Docker network is created before the
Docker containers are started. The testsuite and TLS implementation containers are
configured to be attached to the network. Therefore, both containers communicate
with each other directly without any routers in between that could interfere with the
network traffic. Figure 4.2 shows the evaluator managing the execution of three testruns
in parallel, testing the TLS implementations A, B and C, which can be TLS clients or
servers. The evaluator is implemented in a generic manner, therefore this setup can be
extended for other purposes, for example, efficient validation of the functionality of the
TLS implementation Docker containers.

Docker Network A

Evaluator

Testsuite Container

TLS Implementation A
Container

Network traffic,
TLS handshakes

Docker Network B

Testsuite Container

TLS Implementation B
Container

Network traffic,
TLS handshakes

Docker Network C

Testsuite Container

TLS Implementation C
Container

Network traffic,
TLS handshakes

Figure 4.2: Parallel evaluation of three testruns.

Before the final testrun was started on which the results below are based on, the testsuite
was executed two times against the newest available versions of all implementations.
After it was ensured that the test results of both testruns were equal, the final testrun
was started.

4.2 Results

This section discusses the results of the evaluation and is split into two subsections. In the
first subsection, the newest versions of all implementations are compared to each other
regarding their reached score, their default configurations and individual test results.
The second subsection evaluates the development of the score for different versions of the
same implementation. This provides insights on what was changed during the lifecycle of

4.2 Results 51

an implementation.

4.2.1 Multiple Implementations - Newest Versions

The versions of the analyzed implementations are listed in Table 4.3. The listed versions
were up-to-date in June 2020. The client version of Botan was released in March 2019.
Since no handshake could be performed with later versions, this one is used instead. The
situation for LibreSSL is similar, although version 3.1.3 was released after version 3.2.0
as a maintenance release. However, the features between those two major releases might
be different.

Repository Version
BearSSL ∙ 0.6
BoringSSL 3945
Botan 2.14.0 (S), 2.10.0 (C)
GnuTLS 3.6.14
LibreSSL 3.1.3 (S), 3.2.0 (C)
MatrixSSL ∘ 4.2.2
mbed TLS 2.24.0
NSS 3.54
OpenSSL 1.1.1g
Rustls ∙ 0.17.0
s2n 0.10.7
tlslite-ng ∙ 0.8.0-alpha38
wolfSSL ∘ 4.4.0-stable

∙ Only servers could be tested.
∘ Only clients could be tested.

Table 4.3: Versions of the analyzed TLS implementations.

4.2.1.1 Overall Results

First, the overall results are discussed to get an overview how the implementations reacted
to the tests in general. The comparison is based on the scoring system, that assigns two
scores to each implementation, the security and interoperability score.

Clients

The results of the client tests are shown in Figure 4.4. The implementations are sorted by
their popularity from top to bottom. The chart shows that the most popular implementa-
tions are among the implementations that reach the highest score.

https://github.com/nogoegst/bearssl
https://boringssl.googlesource.com/boringssl
https://github.com/randombit/botan
https://github.com/gnutls/gnutls
https://github.com/libressl-portable/portable
https://github.com/matrixssl/matrixssl
https://github.com/ARMmbed/mbedtls
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/openssl/openssl
https://github.com/ctz/rustls
https://github.com/ctz/rustls
https://github.com/tomato42/tlslite-ng
https://github.com/wolfSSL/wolfssl

4.2 Results 52

s2n and mbed TLS reach the lowest score. For both implementations, there are rea-
sons for this result. mbed TLS does not support record fragmentation. Therefore,
tests that perform TLS handshakes terminate most of the times with the result value
PARTIONALLY_FAILED due to the test derivation. Only those handshakes can succeed
that are not generated by the test derivation feature and do not contain fragmented TLS
record layers.

In the case of s2n, the problem is different. If s2n receives a message that does not comply
to the specification, the implementation often neither responds with an alert message nor
closes the socket. This makes it impossible for the testsuite to determine the reaction
of the implementation. When a message does not conform to the specification, in most
cases an alert or other termination action is expected. If this does not happen, the test
fails.

Another implementation that reaches a noticeable score is Botan, since it reaches the
highest interoperability and third highest security score, although it is only at position
6 sorted in the popularity ranking. The reason for this is that Botan only supports
secure cipher suites by default and does not support TLS 1.3. This results in 50 test
cases less that are executed compared with most popular implementations. However, the
performance throughout the test cases is also very good.

MatrixSSL has a special role among the implementations. The results show that it was
only possible to negotiate a TLS 1.3 cipher suites with the client, although it proposes
TLS 1.0 to TLS 1.2 including the DTLS versions in its supported versions extension.
Therefore, only the TLS 1.3 implementation of the analyzed version is used for the
evaluation.

Servers

The results of the server tests are shown in Figure 4.5. The range from the lowest to the
highest score is higher compared to the client tests. The reason for this is that server tests
require that the client initiates the handshake with the ClientHello message. In contrast to
that, client tests can already operate on the received ClientHello message without sending
any messages to the client. In addition, the server performs more work that is prone to
failure, such as selecting the algorithms for the connection.

Because of this, the scores of the s2n and mbed TLS servers are even lower compared to
the client implementations. The TLS servers of these implementations have the same
problem as the clients. Most of the tests of mbed TLS PARTIALLY_FAIL because it does
not support fragmented TLS record layers.

Regarding s2n there is a new observation that is the difference of 24% between the
interoperability and security score. The testsuite also contains server tests that check if
the server chooses parameters correctly regarding the preference of the client. These tests
have usually a higher interoperability severity than security severity level. Since these tests

4.2 Results 53

0% 20% 40% 60% 80% 100%

BoringSSL

OpenSSL

NSS

s2n

mbed TLS

Botan

LibreSSL

wolfSSL

GnuTLS

MatrixSSL

91.59%

83.3%

85.19%

55.82%

59.29%

90.19%

73.58%

60.89%

77.52%

74.85%

92.86%

92.11%

84.62%

50.26%

61.37%

87.18%

67.18%

73.62%

83.58%

84.79%

Score

Security Interoperability

Figure 4.4: Scores of the newest tested client implementations sorted by their popularity.

do not send invalid TLS messages, they succeed. Tests that send invalid TLS messages
and try to uncover implementation failures usually have a higher security severity than
interoperability severity level. In these cases, s2n often neither sends an alert message
nor closes the TCP socket, which results in a failed test.

Another implementation where the score probably does not reflect the real-world sit-
uation, is GnuTLS. The test results for TLS 1.3 are part of the score, although they
contain false-negative results. The server of the implementation is extremely unreliable
and does often not respond to TLS 1.3 ClientHello messages. Despite the safeguard
mechanisms implemented by the framework to ensure a reliable connection, this problem
occurred. Because of this, nearly all TLS 1.3 tests against this implementation fail
and therefore lower the score. This issue only affects the server of this implementa-
tion.

4.2 Results 54

0% 20% 40% 60% 80% 100%

BoringSSL

OpenSSL

NSS

s2n

mbed TLS

Rustls

Botan

LibreSSL

GnuTLS

BearSSL

tlslite-ng

85.33%

90.42%

84.88%

61.04%

33.93%

78.04%

77.8%

76.64%

50.08%

69.48%

81.17%

83.88%

90.39%

83.8%

36.76%

39.41%

77.43%

74.86%

75.48%

56.41%

60%

80.29%

Score

Security Interoperability

Figure 4.5: Scores of the newest tested server implementations sorted by their popularity.

4.2.1.2 Default Configuration

Despite the results of individual test cases it is also worth looking at the default con-
figuration regarding the supported cipher suites of the implementations. Since every
implementation is compiled without any extra flags that disable certain cipher suites
or protocol versions, analyzing this configuration gives an overview of the security by
default principles of each implementation.

Table B.1 lists which TLS versions the implementations support as well as properties
of the supported cipher suites. Looking at the table reveals that BoringSSL, NSS,
tlslite-ng, LibreSSL and BearSSL support cipher suites using either 3DES or RC4 that

4.2 Results 55

both are insecure. These four implementations provide the worst default configura-
tion.

NSS and LibreSSL are the only implementations that support the RC4 stream cipher
and MD5 as hash algorithm by default. NSS shows a strange behavior. If the server
has access to an RSA- and EC certificate instead of only an RSA certificate, only cipher
suites that use the EC certificate and provide PFS are supported by the server. The old
legacy algorithms (RC4, 3DES, MD5) are not supported anymore, although cipher suites
using an EC certificate and these algorithms are specified in RFC 4492 [24, Section 6],
such as TLS_ECDHE_ECDSA_WITH_RC4_128_SHA.

A better configuration is provided by the implementations that do not offer cipher
suites using the insecure algorithms, but still support non-PFS cipher suites. These are
OpenSSL, s2n, mbed TLS and GnuTLS.

The best default configuration is provided by Rustls, Botan and wolfSSL. Those imple-
mentations only support the most recent cipher suites that provide PFS and do not use
the CBC mode of operation for encryption algorithms.

4.2.1.3 Server (TLS 1.2)

This and the following sections discuss the results of individual server and client test cases,
grouped by the test categories explained in Section 3.4.1. Only the tests resulting in the
most curious behaviors are discussed. This is specifically the case when multiple implemen-
tations show different behaviors. Table B.2 shows a summary of how many test cases of
the discussed categories failed for a specific implementation.

Expected Alert ̸= Received Alert

Invalid Record Layer Content-Type. During the TLS handshake 9 implementations
fail at a class of test cases that send an invalid record layer content-type. One test sends
a ClientHello message inside a record layer with the content-type 0xff. The second test
sends the CCS message in such a record layer. In both cases an unexpected_message fatal
alert must be sent [37, Section 6]. The results of the test with the ClientHello message show
that BearSSL, Botan, LibreSSL, mbed TLS and Rustls close the TCP socket. GnuTLS
and tlslite-ng send an record_overflow alert, NSS sends an illegal_parameter alert
and s2n neither closes the socket nor sends an alert message. If the invalid content-type is
sent with the CCS message, Botan, GnuTLS and LibreSSL, which failed before, complete
the second test successfully by sending the correct alert message. BearSSL, mbed TLS,
tlslite-ng and s2n show the same behavior as before. NSS on the other hand now sends a
decode_error alert.

4.2 Results 56

SCSV Fallback. TLS servers can detect a fallback of the TLS version if the client sends a
special cipher suite as part of the cipher suite list and if the highest supported TLS version
sent by the client is lower than the highest supported version by the server. In this case,
the server must respond with an inappropriate_fallback fatal alert [40, Section 3]. s2n
does not fulfill the specification. The implementation does not continue the handshake
but also neither closes the TCP socket nor sends an alert.

Lower TLS Version. If the ClientHello proposes a lower TLS version than the server
supports, the server must send a protocol_version alert according to RFC 5246 [37].
NSS and OpenSSL respond with a handshake_failure alert, s2n does neither send an
alert nor closes the TCP socket.

Max Fragment Length Extension. One test case covers RFC 6066 [20] that specifies
the maximum fragment length extension. The RFC specifies certain values that are
valid length values. If the client sends an invalid length the implementation must
abort the handshake with an illegal_parameter alert [20, Section 4]. From the tested
implementations, BearSSL, GnuTLS, mbed TLS and OpenSSL support this extension.
BearSSL does not fulfill the specification. Instead of sending the alert message, it only
closes the TCP socket.

GREASE – ALPN Extension. Although RFC 8701 [42] only refers explicitly to the
RFC of TLS 1.3, tests for TLS 1.2 are implemented as well checking if the implementation
complies to the RFC. This provides insights how implementations react to unknown values.
The first test covering this RFC, addresses the Application-Layer Protocol Negotiation Ex-
tension specified in RFC 7301 [52]. The test sends the special GREASE value as protocol
name in the extension. Only Botan and tlslite-ng support the ALPN extension. Botan ne-
gotiates the echo/0.1 ALPN protocol, that was not offered by the client in the ClientHello
message and thus fails the test. tlslite-ng responds with a no_application_protocol
alert and conforms to the specification.

Expected Handshake Termination

Zero-Length Fragment – Handshake Record. According to the RFC, implementations
“MUST NOT send zero-length fragments of Handshake, Alert, or ChangeCipherSpec
content types” [37, Section 6.2.2]. The implemented test cases check how the implemen-
tations react if they receive zero-length record layer fragments of Handshake and Alert
content types. The expected result is a termination of the handshake since it violates
the specification. Receiving a zero-length handshake fragment followed by a record layer
containing the ClientHello message shows three different behaviors. BearSSL, BoringSSL,
LibreSSL, NSS, OpenSSL and Rustls continue with the handshake normally, thus fail the

4.2 Results 57

test. Botan, mbed TLS and s2n close the TCP socket, whereas GnuTLS and tlslite-ng
respond with an unexpected_message fatal alert.

Zero-Length Fragment – Alert Record. Some implementations change their behavior
shown above if they receive a zero-length fragment of an alert message. The test case
sends a close_notify warning level alert. Without a zero-length fragment, the other
peer should respond with the same alert before closing the socket [37, Section 7.2.1]. Since
the test case sends a zero-length fragment, the expected response is either a fatal alert or
the termination of the socket. s2n, BearSSL and Rustls send a close_notify warning
alert. This indicates that they ignored the zero-length fragment and continued normally.
LibreSSL and mbed TLS close the socket, whereas the remaining implementations send
a fatal alert. In comparison to the zero-length ClientHello test, s2n, Botan, OpensSSL,
NSS and BoringSSL react differently. s2n now accepts the zero-length fragment, whereas
the other implementations now reject it. The behavior of Rustls, mbed TLS and tlslite-ng
are consistent.

Select RC4 Cipher Suite. As already shown in Table B.1, two server implementations
support cipher suites using RC4. The test cases covering RFC 7465 [39] that prohibits
RC4 cipher suites, test if the server aborts the handshake when the client offers only
RC4 cipher suites. NSS and LibreSSL both continue the handshake and thus select an
RC4 cipher suite. This test case is rated with a critical security severity since the RC4
cipher is insecure [53].

ECC Extensions. RFC 4492 and 8422 specify two extensions addressing the handling
of elliptic curves. The RFCs specify that the client must not send the elliptic_curves
and ec_point_formats extension “if it does not propose any ECC cipher suites” [24,
Section 4]. The test case sends a ClientHello message that violates this specification. The
expected result is a termination of the handshake. All implementations show the same
behavior. They ignore the extensions and continue with the handshake. This is a sensible
choice to reach higher interoperability. However, this still violates the specification and
thus results in a failed test. To compensate the impact of this test case to the overall
score, both severities are set to the lowest level.

Expected different Behavior

Select RC4 Cipher Suites. A second test that addresses RC4 cipher suites works
differently from the test explained above. This time the client sends RC4 cipher suites
and one non-RC4 cipher suite. The non-RC4 cipher suite is replaced with every non-RC4
cipher suite that the server supports. The non-RC4 cipher suite is always at the bottom of
the cipher suite list. According to the RFC, the implementation must not select a cipher
suite using RC4 [39, Section 2]. Although NSS and LibreSSL support RC4 cipher suites,

4.2 Results 58

only LibreSSL fails this test and selects an RC4 cipher suite. NSS always selects the
non-RC4 cipher suite at the bottom of the cipher suite list.

Signature Algorithms Extension. RFC 5246 specifies that the server must use the
RSA_PKCS1_SHA1 signature and hash algorithm if the client does not send the exten-
sion as part of the ClientHello message. The test case sends a ClientHello message
without the extension. Botan and Rustls completely abort the handshake respond-
ing with a handshake_failure fatal alert and thus fail the test. The other imple-
mentations select RSA_PKCS1_SHA256 as algorithm. This is a sensible choice since
SHA-1 is vulnerable to collisions [54]. A RFC deprecating SHA-1 is currently in
draft [55].

Encrypt-then-MAC Extension. The Encrypt-then-MAC extension makes the imple-
mentation resistant against attacks mentioned in Section 2.1.1.1. Because of this, a test
case exists that checks if an implementation supports this extension. The test sends the
extension in the ClientHello to the server and expects the extension to be present in the
receiving ServerHello message. Only GnuTLS, mbed TLS, OpenSSL and tlslite-ng support
this extension. The test fails for the other implementations.

GREASE – Signature and Hash Algorithms Extension. A second GREASE test sends
GREASE values as part of the signature and hash algorithms extension in the ClientHello,
together with valid values. LibreSSL and s2n terminate the handshake although the list
of algorithms contains values supported by the implementation. LibreSSL responds with
a fatal decode_error alert. s2n does neither close the connection nor sends an alert or
any other message.

4.2.1.4 Server (TLS 1.3)

Since the TLS 1.3 server implementation of GnuTLS is very unreliable, the results
generated by this implementation are ignored in this section.

Expected Alert ̸= Received Alert

ClientHello Message – Compression. The TLS 1.3 RFC is stricter than the TLS 1.2
RFC. For the ClientHello message it requires specific values for fields that were flexible
in TLS 1.2. If the value does not meet the requirement, the handshake must be aborted
with a fatal illegal_parameter alert [25, Section 4.1.2]. This applies to the compression
and version fields. Sending an illegal value for the compression field causes OpenSSL to
respond with a decode_error alert instead of an illegal_parameter alert. The other
implementations respond with the correct alert message.

4.2 Results 59

ClientHello Message – Version. Other test cases modify the version field of the Clien-
tHello message and instead of using the TLS 1.2 version (0x03 0x03), the test sets set
the version to 0x03 0x04 and 0x03 0x03, respectively [25, Section 4.1.2]. In this case
no implementation responds with an alert, every implementation selects TLS version 1.3
in the ServerHello message. In contrast to that, setting the version field to 0x03 0x00
makes NSS and tlslite-ng fail with a protocol_version fatal alert, OpenSSL responds
with handshake_failure alert and 0x03 0x00 as version for the record layer. The
remaining implementations, BoringSSL and Rustls, still negotiate TLS 1.3. One possible
explanation could be that 0x03 0x00 represents SSL 3.0 and trying to parse the TLS 1.3
ClientHello message could cause parsing errors. However, none of the implementations
supports SSL 3.0 anymore.

Signature and Hash Algorithms Extension. The TLS 1.3 RFC requires that the signa-
ture and hash algorithms extension must be sent by the client if the server uses a certificate
for authentication [25, Section 4.2.3]. If the client does not send this extension, the server
must respond with a missing_extension alert. The test case does not send the extension.
BoringSSL and Rustls respond with a handshake_failure fatal alert. NSS, OpenSSL
and tlslite-ng respond with the correct alert message.

Expected Handshake Termination

Zero-Length Fragment – Handshake Record (ClientHello). As for TLS 1.2, the same
test case also exists for TLS 1.3. The results are very similar. From the tested im-
plementations that support TLS 1.3, only tlslite-ng rejects a zero-length handshake
record layer in front of the ClientHello message with an unexpected_message fatal
alert. The other implementations ignore the zero-length fragment and continue the
handshake.

Zero-Length Fragment – Handshake Record (Finished). By sending a zero-length
handshake record layer preceding the Finished message, the behavior of OpenSSL changes.
OpenSSL and tlslite-ng respond with an unexpected_message fatal alert. The other
implementations ignore the fragment and continue.

Keyshare Extension. The client sends the keyshare extension as part of the ClientHello
message. According to the RFC the keyshare entries that are part of the extension and
containing a public key “MUST correspond to a group offered in the ‘supported_groups’
extension and MUST appear in the same order” [25, Section 4.2.8]. The test case sends
the keyshare entries in a different order than the groups listed in the supported_groups
extension. Only tlslite-ng terminates the handshake with an illegal_parameter fatal
alert. The other implementations continue the handshake normally. The test case

4.2 Results 60

executes a complete handshake that shows that the other implementations select the
correct combination of group and keyshare entry.

Expected different Behavior

The test cases that try to trigger a reaction of the server that is different from the expected
behavior all complete successfully. These tests cover the supported_versions extension
and test the version selection algorithm. Tests covering the GREASE RFC [42] are also im-
plemented. These test cases do not show any interesting behavior.

4.2.1.5 Client (TLS 1.2)

Expected Alert ̸= Received Alert

Select Unsupported Version. A test case selects a TLS version that the client does
not support and sends it as part of the ServerHello message. According to the RFC,
the client must respond with a fatal protocol_version alert [37, Section E.1]. The
version that is selected by the server is not specified in any RFC, more precisely 0x03
0x0F. This ensures that the client does not support the version and must send the alert
message. NSS and Botan send an illegal_parameter respectively handshake_failure
fatal alert. s2n and wolfSSL close the TCP socket. Thus, these 4 implementations fail
the test.

Invalid Record Layer Content-Type. This test case is already explained above as part
of the server tests. The client test sends the invalid record layer content type with
the ServerHello and CCS messages. It is expected from the client to respond with an
unexpected_message fatal alert. NSS responds with a decode_error alert, when the
invalid content type is sent with the CCS message record layer. In case of an invalid
content type for the ServerHello, it responds with an illegal_parameter alert. In
contrast to this, s2n, wolfSSL and mbed TLS show a more consistent behavior in those
two tests. These implementations close the TCP socket and thus also terminate the
handshake.

Additional Extension. If the client receives an extension that it does not request with the
ClientHello message, “it MUST abort the handshake with an unsupported_extension
fatal alert” [37, Section 7.4.1.4]. The test case checks the extension sent by the client
in the ClientHello message and adds an extension to the ServerHello message that is
not part of the ClientHello message. LibreSSL, s2n and wolfSSL continue with the
handshake normally. mbed TLS responds with a handshake_failure alert. Every other
implementation passes the test and sends the expected alert. It is not covered by any
test if the clients respect the additionally sent extension.

4.2 Results 61

GREASE – Extension. A second test case sends a GREASE extension as part of
the ServerHello message. In this case only BoringSSL, Botan and NSS terminate
the handshake. Botan responds with a handshake_failure fatal alert instead of an
unsupported_extension alert message. OpenSSL, GnuTLS and mbed TLS accept the
additional GREASE extension whereas they rejected the additional extension in the
test case before. Botan on the other hand accepted the additional extension before
and rejects the GREASE extension. This shows that the implementations check the
extension type and react differently depending on whether they know the extension type
or not.

Expected Handshake Termination

Zero-Length Fragment – Handshake Record (ServerHello). Part of the client tests
is also a test case that sends a zero-length record layer fragment to the client. This is
sent before the ServerHello message. Since the specification does not allow this, the
termination of the handshake is expected. BoringSSL, NSS and OpenSSL continue the
handshake and ignore the zero-length fragment. mbed TLS, s2n and wolfSSL terminate
the handshake by closing the TCP socket. GnuTLS and LibreSSL respond with an
unexpected_message fatal alert whereas Botan responds with a decode_error alert
message.

Sending Alert Messages. The testsuite contains a client test that sends fatal alerts
with every available alert description to the client. According to the RFC any connection
must not be resumed that received a fatal alert [37, Section 7.2.2]. The alert is sent in
two different tests, each using a different location for the injected alert message. The
first test sends it in front of the ServerHello message and the other test sends it in
front of the ServerHelloDone message. Both tests result in different behaviors of the
implementations. If the alert is sent before the ServerHello message, LibreSSL ignores
the user_cancelled fatal alert and continues the handshake normally. Every other alert
description results in closing the TCP socket. In contrast to that, Botan and s2n ignore
the close_notify fatal alert. If the alert is sent before the ServerHelloDone message,
LibreSSL also terminates the handshake when the user_cancelled alert is sent. The
behavior of Botan and s2n is consistent, so that they still only ignore the close_notify
alert. These results show that the handling of the alert messages does not evaluate the
alert level before the description.

GREASE – Server Initiated Extension Points. As for the TLS 1.2 server tests, the
testsuite also includes client tests covering the GREASE RFC [42]. In this case, the
server selects GREASE values as version, cipher suite, signature algorithm and elliptic
curve and evaluates the reaction. Since the client does not know the selected values, a
handshake termination is expected. Selecting a GREASE value as cipher suite shows
that s2n and wolfSSL close the TCP socket, whereas the remaining implementations

4.2 Results 62

respond with an illegal_parameter or handshake_failure alert. mbed TLS responds
with an internal_error fatal alert. Setting the elliptic curve or signature algorithm
to a GREASE value, the behavior of s2n changes. s2n now neither sends an alert
message nor closes the TCP socket. The other implementations still send fatal alert
messages.

Encrypt-then-MAC Extension. According to the RFC specifying the extension, a server
“MUST NOT send an encrypt-then-MAC response extension back to the client” [21,
Section 3], if it selects a cipher suite using a stream or AEAD cipher. If the client sends
the extension as part of the ClientHello message, the test case selects a cipher suite using
an AEAD cipher and includes this extension. Every implementation that requested this
extension accepts the ServerHello message and continues the handshake normally. Since
this extension has no effect on AEAD cipher suites, this test case shows that the clients
do not perform a sanity check on the ServerHello message.

Expected different Behavior

Encrypt-then-MAC Extension. As for the server tests, a test case for the clients exists
as well that checks if a client supports the extension and therefore offers a possibility to
mitigate certain attacks. Botan, GnuTLS, mbed TLS, OpenSSL and wolfSSL support
the extension.

RC4 Cipher Suites. As already mentioned in Section 4.2.1.2, the client implementations
of LibreSSL and NSS offer RC4 cipher suites. This is a behavior that is not expected
from any client since the RC4 cipher is insecure [53].

4.2.1.6 Client (TLS 1.3)

Expected Alert ̸= Received Alert

Select unsupported Cipher Suite. If the server selects a cipher suite that was not offered
by the client, the client must terminate the handshake by sending an illegal_parameter
fatal alert [25, Section 4.1.3]. The test case sends a GREASE value as a cipher suite.
GnuTLS is the only implementation that responds with the wrong alert description, that
is a handshake_failure alert.

ServerHello – Random. If a TLS 1.3 server chooses to select TLS 1.2 it must set the
last 8 bytes of the server random value to a specific value. A TLS 1.3 client must check
these bytes and terminate the handshake with an illegal_parameter alert [25, Section
4.1.3]. The test case is only executed when the tested client supports TLS 1.3 and

4.2 Results 63

TLS 1.2, selects TLS 1.2, sets the correct value for the server random and expects an
alert message. The NSS client implementation does not check the 8 bytes of the server
random and continues the handshake normally. This seems to be an issue of the default
configuration. The downgrade check is enabled since Firefox 72. It was disabled before
because of problems with middleboxes that do not support TLS 1.3, but forward the
ServerHello random value from the server [56].

ServerHello – Session ID. TLS 1.3 requires that the session id in the ServerHello is
equal to the session id in the ClientHello message [25, Section 4.1.3]. If the session id in the
ServerHello is different the client must abort the handshake with an illegal_parameter
alert. The implementations show two different behaviors. GnuTLS and MatrixSSL do
not check the session id and continue normally. BoringSSL responds with a different
alert, a decode_error fatal alert.

ServerHello – Extensions. Since TLS 1.3 supports extensions to be present in multiple
places like the ServerHello and the EncryptedExtension message, the TLS 1.3 client
must check the extensions in both messages and send an illegal_parameter alert
if an extension is sent in the wrong message [25, Sections 4.2, 4.3.1]. One test case
adds the heartbeat extension to the ServerHello message, that is usually part of the
EncryptedExtensions message. LibreSSL, MatrixSSL and OpenSSL continue with the
handshake normally.

Encrypted Extensions. The EncryptedExtensions message is covered by two tests. One
test adds the padding extension to the message, another test adds the supported_versions
extensions to this message. The padding extension is usually part of the ClientHello
and only sent by the client. The supported_versions extension is only allowed in the
ClientHello and ServerHello messages. If the supported_versions extension is added
by the test case to the Encrypted Extensions message, BoringSSL, GnuTLS and NSS
respond with a wrong unsupported_extension instead of an illegal_parameter fatal
alert. If the padding extension is sent, GnuTLS, LibreSSL and MatrixSSL ignore the
extension and continue with the handshake. This indicates that these implementations
do not check the extensions of the EncryptedExtensions message for extensions that are
only sent by the client. In comparison to the previous test case, the behavior of GnuTLS
and OpenSSL is not consistent.

Expected Handshake Termination

Zero-Length Fragment – Handshake Record (ServerHello, Finished). Zero-length
record layer fragments are also explicitly excluded for TLS 1.3 by the RFC [25, Section
5.1]. The test cases send zero-length fragments in front of the ServerHello message and
the Finished message and expect a termination of the handshake. BoringSSL and NSS

4.2 Results 64

ignore the fragments in both cases. OpenSSL only continues with the handshake when
the fragment is in front of the ServerHello message.

Expected different Behavior

Supported Versions Extension. According to the RFC, clients must ignore the ver-
sion field of the ServerHello message if the supported version extension is present [25,
Section 4.2.1]. The test case sets the version field to an invalid value of 0x05 0x05
but sends the supported_versions extension as required to perform a TLS 1.3 hand-
shake. Only MatrixSSL and OpenSSL continue the handshake as expected. The other
implementations respond with fatal protocol_version or illegal_parameter fatal
alert. The RFC is not consistent here for client implementations, since it also defines
for the ServerHello message that the version field must be set to 0x03 0x03 [25, Section
4.1.3].

4.2.1.7 Client and Server (TLS 1.2)

This subsection describes results of test cases that are implemented once but executed
for client and server tests. If the result refers to an implementation where the client and
server are part of the evaluation it is written in brackets behind the implementation
which network peer is affected. For example, GnuTLS (S) refers to the server and
GnuTLS (C) to the client. If only the server or the client could be tested, the brackets
are omitted.

Expected Alert ̸= Received Alert

Application Data – AEAD Cipher. After the handshake is completed, test cases are
implemented that send application data and modify the ciphertext and authentication tag
to observe the reaction of the other peer that receives data that it can not decrypt. The
RFC requires that a bad_record_mac must be sent if such an event happens. Although
the implementations react consistently in both test cases, there are implementations
where the client reacts differently than the server. BearSSL, GnuTLS (C), Rustls and
s2n (S) close the TCP socket instead of sending a bad_record_mac fatal alert. The s2n
client also fails at the test cases but it does not close the TCP socket or respond with an
alert message. The other implementations including the GnuTLS server send the correct
alert message.

Application Data – CBC Cipher. The approach described above is also tested for CBC
cipher suites. Instead of modifying the authentication tag and the ciphertext, the padding
and MAC are modified. If the result between both test cases would be different, the
implementation would be vulnerable to the padding oracle attack. Although these test

4.2 Results 65

cases check a property that lead to attacks in the past, not all implementations respond
with the correct bad_record_mac fatal alert message. BearSSL, GnuTLS (C), s2n (S)
and WolfSSL close the TCP socket. s2n (C) does not respond at all, neither with a TCP
FIN packet to close the socket nor with an alert message.

Skip CCS. The RFC requires that the ChangeCipherSpec message is sent before the Fin-
ished message. If this is not the case, a fatal alert must be sent [37, Section 7.4.9]. s2n (C),
WolfSSL and BearSSL close the TCP socket without sending an alert message. This time
the server of s2n does not send an alert or closes the socket.

Expected Handshake Termination

CCS Message. The ChangeCipherSpec message contains only a single byte set to 1.
The test case checks if the implementations check this condition. This is covered by two
test cases. One test case sends a different value for the single-byte and the other test
case sends two bytes instead of one. GnuTLS (S), WolfSSL and Rustls does not verify
the value of the single byte. If multiple bytes are sent Rustls is the only implementation
that accepts the longer CCS message and continues with the handshake. In both cases
the other implementations react either with closing the TCP socket or they respond with
a fatal alert message.

Zero-Length Fragment – CCS Record. Sending a zero-length CCS record is not al-
lowed by the RFC. The test case sends a zero-length CCS record followed by the CSS
message in a separate record. In contrast to the previous test cases only LibreSSL
(S/C), OpenSSL (S/C) and BearSSL accept such a message and continue with the
handshake.

Expected different Behavior

Zero-Length Fragment – Application Record. According to the RFC it is allowed to
send zero-length record layer packets that use the application content type [37, Section
6.2.1]. Although this is allowed, WolfSSL closes the connection. This behavior can have
a negative impact on the interoperability between the WolfSSL client and another server
that sends such packets.

4.2.1.8 Client and Server (TLS 1.3)

Expected Alert ̸= Received Alert

Decryption failure. Similarly to TLS 1.2, the TLS 1.3 specification requires that a
bad_record_mac fatal alert is sent if the decryption fails. This is covered by two test cases

4.2 Results 66

that modify the authentication tag and the cipher text. In both cases all the implementa-
tions react consistently. Rustls and GnutTLS close the TCP socket. LibreSSL responds
with a close_notify warning alert before closing the socket. The other implementations
that support TLS 1.3 respond with the correct alert.

Invalid Record Layer Content-Type. The implemented test case changes the content-
type of the record layer for the first sent message to 0xFF. That is either the ClientHello
for client tests or the ServerHello for server tests. If an implementation receives a
record layer with an unknown content-type “it MUST terminate the connection with an
‘unexpected_message’ alert” [25, Section 5]. 3 implementations respond differently. NSS
sends an illegal_parameter fatal alert, tlslite-ng a record_overflow alert and Rustls
closes the TCP socket.

Too large Record Layer. In contrast to TLS 1.2, TLS 1.3 requires that a record_over-
flow fatal alert message must be sent if the record layer is larger than 214 + 256 bytes.
The test case sends an application message after the handshake with a size of 214 + 266
bytes, so that the message is larger than the limit. GnuTLS is the only implementation
that does not conform to the specification and closes the socket instead of sending the
alert.

Expected Handshake Termination

Record Layer Version. The RFC specifies that “implementations MUST NOT send
any records with a version less then 0x0300. Implementations SHOULD NOT accept
any records with a version less than 0x0300 (but may inadvertently do so if the record
version number is ignored completely)” [25, Section D.5.]. The test case sends a Clien-
tHello/ServerHello message inside a record layer with the version 0x02 0x03. NSS,
MatrixSSL and tlslite-ng ignore the version number and continue as a regular TLS
1.3 handshake. Thus, all implementations pass the test but the behavior is inconsis-
tent.

Expected different Behavior

There is no test implemented in the testsuite targeting server and client implementations
that fits into this category. TLS 1.3 tests that belong to this category are part of
Section 4.2.1.6 and Section 4.2.1.4.

4.2.1.9 Other Observations

TLS 1.3 – Encrypted Alert Messages. The client tests have shown that the implemen-
tations behave differently regarding the encryption of alert messages. If the server testing

4.2 Results 67

the client injects a failure after the ServerHello message, the client can already calculate
the encryption keys and encrypt the alert message reporting the failure. MatrixSSL and
OpenSSL do not encrypt alert messages at this point in time. The other implementations
send encrypted messages although. BoringSSL and GnuTLS send a CCS message before
the encrypted alert. In contrast to that, LibreSSL and NSS send the alert message
without CCS before.

LibreSSL – Fatal alerts. If the client implementation of LibreSSL sends a fatal alert it
is often followed by a close_notify warning alert. This behavior does not conform to
the specification. According to the RFC fatal alert messages “result in the immediate
termination of the connection” [37, Section 7.2].

4.2.2 Same Implementation - Multiple Versions

In this section multiple versions of the same implementation are evaluated. The develop-
ment of the score and the analysis of the tests where the results changed, show which
parts of an implementation were updated. The following sections limit the analysis of
version histories to the most interesting ones.

The analyzed versions of the NSS and tlslite-ng implementations only include the latest
patch version of every minor release. If, for example, the versions 3.28, 3.28.1 up to
3.28.5 are available, the data set only includes version 3.28.5. This reduces the amount
of data that is needed to be analyzed. Since the patch releases do not include any
new major features, the impact of the scores between patch versions is small and still
visible in comparison with a following minor release that includes theses patches as
well.

4.2.2.1 tlslite-ng Server

The development of the score of the tlslite-ng server shows in Figure 4.6 two points where
it changes. Although there is not a lot of dynamic in this graph, the results are still
interesting.

The first increase is caused by the update from version 0.5.2 to 0.6.0 that changes
the result of four test cases. The versions up to 0.6.0 do not pass the three tests
completely that invalidate the MAC, padding and ciphertext of CBC encrypted data.
These three test cases succeed in general except for the case when the server selects the
TLS_DHE_RSA_WITH_AES_128_CBC_SHA cipher suite. The fourth test sends a TLS record
that exceeds the size limitation. The result changes here from PARTIALLY_FAILED to
SUCCEEDED. Up to version 0.6.0, the test case fails for every cipher suite except the one
mentioned before, where the implementation closes the socket. From version 0.6.0 on all
of the mentioned test cases succeed.

4.2 Results 68

The second change of the graph occurs from version 0.7.5 to the latest available version
0.8.0-alpha38. The newest version is the first version supporting TLS 1.3. Since multiple
TLS 1.3 test cases fail, the score drops by around 1%. It is interesting to note that
version 0.8.0-alpha38 adds support for 3DES cipher suites, although the versions before
did not support those. This also causes a test checking for supported deprecated cipher
suites to fail and therefore lowers the score.

0.5
.0

0.5
.2

0.7
.0

0.7
.2

0.7
.4

0.8
.0-

alp
ha

38

80%

90%

100%
Sc

or
e

Interoperability
Security

Figure 4.6: Development of the testsuite scores for the tlslite-ng server.

4.2.2.2 Botan Client

The development of the score for the client implementation of Botan is visible in Figure 4.7.
The test results of this implementation show an interesting behavior. From version 1.11.9
to 1.11.21 the test case sending a zero-length application record fails for cipher suites
that use an AEAD cipher. From version 1.11.22 this high severity interoperability test
fails completely which results in a loss of around 1% of the interoperability score. This
change is visible in Figure 4.7.

The update from version 1.11.29 to 2.0.0 lets this test case succeed and adds around
3% on top of the interoperability score. The security scores rises as well, since Botan
adds support for the encrypt-then-MAC extension, which results in a successful medium
severity security test.

The next bigger change can be observed with the update from version 2.4.0 to 2.5.0.
This update causes a high severity interoperability test to succeed that sends a GREASE
extension with the ServerHello message to the client. Before version 2.5.0 Botan accepts
this extension which causes the test to fail. After the update, the extension is rejected

4.2 Results 69

as expected since the client did not request it. This test also adds a few points to the
security score that causes it to rise as well.

1.1
1.9

1.1
1.1

6

1.1
1.2

2

1.1
1.2

7
2.1

.0
2.6

.0
80%

85%

90%

95%

100%

Sc
or

e

Interoperability
Security

Figure 4.7: Development of the testsuite scores for the Botan client.

4.2.2.3 NSS Client

The scores of the NSS client also see an improvement over time (Figure 4.8). Noticeable is
the drop in the beginning from version 3.28.1 to 3.29.5. The older version passes the test
case that sends a zero-length ServerHello message because it terminates the handshake
by closing the socket. All of the newer versions fail at this test since they ignore the
zero-length fragment and continue with the handshake.

The update from version 3.33 to 3.34.1 results in a higher interoperability score because
the implementation changed the handling of records that are too large. Instead of ignoring
those records and failing the test, they are rejected since version 3.34.1 with the correct
record_overflow fatal alert.

The same update also changes the behavior when the server selects an unsupported
TLS version. Instead of sending a protocol_version alert, the client responds with
a decode_error after the update. This change was reverted in the next update to
version 3.35. Therefore, the score reaches a plateau. Two versions later it drops again
because the behavior of the same test case changed again. In the versions after 3.37.3,
the client responds with a illegal_parameter fatal alert, instead of the specified
protocol_version alert.

With the release of version 3.39 both scores increase again. This version introduces
support for TLS 1.3. Since most of the TLS 1.3 test cases complete successfully, the
score increases a lot. The same update also changes the behavior of the client when

4.2 Results 70

the server selects TLS 1.2 and sends an invalid signature algorithm identifier in the
ServerKeyExchange message. Instead of just closing the TCP socket, the client responds
with an illegal_parameter fatal alert. This behavior is also already visible since version
3.37.3. In versions 3.37.3 and 3.38 the client only responds with the alert if the server
selected a non-TLS_DHE cipher suite.

3.2
8.1 3.3

3
3.3

8
3.4

3
3.5

2.1

80%

85%

90%

95%

100%
Sc

or
e

Interoperability
Security

Figure 4.8: Development of the testsuite scores for the NSS client.

5 Conclusion

The result of this thesis is a developed testsuite and framework that allows to model test
cases for the TLS handshake based on the specification. Due to the usage of JUnit, the
framework can be extended with new JUnit extensions to be able to model more specific
TLS tests. The workflow for the development of further test cases also highly benefits
from JUnit because of the GUI support for many IDEs. This allows executing a single
test during development without an overhead. The flexibility of the framework together
with the features of TLS-Attacker allow to create and execute TLS handshake sequences
in a convenient way. Even more important is the validation of the received messages
from the other peer. The framework offers the necessary APIs to be able to model even
complex validation procedures.

The evaluation shows that the developed testsuite can find violations of the specification.
In most cases, the implementations respond with different alert messages than specified.
While this behavior is in most cases only a violation of the specification, sending different
alerts could lead in specific scenarios to oracles that might result in side-channels that
can be used for attacks. Not even the sending of a bad_record_mac alert message when
the padding or MAC of CBC encrypted data is invalid is implemented correctly across
all implementations, although this is important to prevent the basic padding oracle
attack [19]. However, such a padding oracle could not be found during the evaluation,
since the behavior of the implementations between those two test cases was always
consistent. Other implementations terminate the handshake while they should not.
This is the case for LibreSSL and s2n when they receive unknown signature and hash
algorithms in the ClientHello message.

The implemented tests can also reveal the inner workings of an implementation. There is,
for example, the LibreSSL client that ignores an user_cancelled fatal alert that is sent
before the ServerHello message, but terminates the handshake when it receives every other
fatal alert. In contrast to that, if LibreSSL receives a user_cancelled fatal alert in front
of the ServerHelloDone message it terminates the handshake as expected. Other imple-
mentations, like OpenSSL, GnuTLS and mbed TLS, terminate the handshake when they
receive a known extension in the ServerHello that they did not request, but continue the
handshake if they receive an unknown GREASE extension.

The evaluation of multiple historic versions of the same implementation shows that the
score of the testsuite changes over time. Further, it can be determined when certain
features of the implementation are changed, like the support of new extensions or the
handling of unknown algorithms. Although the newest versions of the implementations do

5.1 Future Work 72

not show different behaviors in the same test case depending on the negotiated cipher suite,
this is, for example, observed in older versions of Botan. This proves that the testsuite
can detect such behaviors using the test derivation feature, but only in very few occasions.
If the needed time to perform a testrun is important, having this feature enabled costs
more than the benefit of the derivation feature is.

The development of the testsuite and the results also showed that implementing a TLS
stack is a very complex task. Especially for TLS 1.2, since the specification is spread
over multiple RFCs. Often the information in the RFC about a specific element of the
protocol is not available in a single place, so that a developer must combine multiple
sections to be able to implement the correct behavior for every case. Another problem is
that the RFC specifies that something MUST happen, but it does not elaborate why
this is a requirement. This makes it extremely difficult to estimate the consequences
that can occur if the specification is not correctly implemented. Elaborating more about
the consequences would probably result in a higher awareness for the problems at the
developer’s side and a higher motivation to develop an implementation that conforms to
the specification in its entirety.

5.1 Future Work

The tests contained in the testsuite are not covering every aspect of the specifications.
Features like session resumption, 0-RTT handshakes, early data, client authentication
or certificate validation are currently not covered. To get an even better understanding
of the implementation’s behavior, tests covering those features should be implemented.
For the development of more consistent tests, it might be better to put more effort
into the process finding a formal way to be able to model test cases based on the
RFC.

Another goal should be to make the tests even tighter. This could be achieved, for
example, by validating every value in every received message automatically. That would
reveal implementations that use invalid values together with valid values in their messages,
for example, a cipher suite that is part of the ClientHello cipher suite list but not specified
at all.

Furthermore, the edge cases that prevent the testsuite and the TLS-Scanner from
performing a TLS handshake with implementations should be eliminated. These can
occur because the parameters of a message are not accepted by the implementation,
although the message itself conforms to the specification. Another kind of edge cases
are those that lead to false-negative test results. If an implementation sends an alert
message, closes the socket and TLS-Attacker tries to send another message, it receives
an RST TCP packet. The following receive action of the workflow is not able to receive
the alert message anymore. The problem is that this message might be needed to flag
the test case as successfully completed. This issue only appeared in a few test cases and
was only detected during the final evaluation of the results.

Considering the test results, looking into the extension handling of clients seems to be
promising. As shown there are client implementations available that do not terminate the
handshake when they receive an extension that they did not request in their ClientHello
message. It should be validated if the clients just ignore the extension or react to the
injected extension as if the client had requested it.

The length field tests still need to be evaluated. None of those test cases succeeded for any
implementation. The tests modify every available length field in every sent message. This
means that there are also length fields modified that are part of the TLS-Attacker message
class but only serialized when a specific protocol version is negotiated. The cookieLength
field of the ClientHelloMessage class, for example, is only sent if DTLS is used. When
the test case modifies such a field and performs the handshake, the handshake will always
succeed for non-DTLS protocol versions, but the test case fails. This makes the analysis
of these tests very time-consuming. However, analyzing the performed handshakes for
multiple versions of the same implementation could give insights how the message parsers
have changed over time.

This thesis only evaluated the example server and client applications provided by the
implementations. Using the testsuite against real-world TLS implementations, for
example, middleboxes or web-servers may result in interesting and different outcomes
than described in this thesis.

List of Figures

2.1 Subprotocols of TLS 1.2. 5
2.2 Message flow of TLS 1.2 . 6
2.3 Message flow of TLS 1.3 . 10
2.4 Overview of TLS-Attacker classes. 13
2.5 Processing of a sending/receiving TLS messages with TLS-Attacker classes. 16

3.1 Overview of the testsuite architecture. 21
3.3 Interaction between the most important classes of the test framework. . . 27
3.4 Derivation process of State objects. 31
3.6 Upload process and processing of the documents into MongoDB database

collections. 42

4.2 Parallel evaluation of three testruns. 50
4.4 Scores of newest tested clients. 53
4.5 Scores for newest tested servers. 54
4.6 Development of the testsuite scores for the tlslite-ng server. 68
4.7 Development of the testsuite scores for the Botan client. 69
4.8 Development of the testsuite scores for the NSS client. 70

A.1 Networks of TLS 1.2 and TLS 1.3 RFCs. 81
A.2 Analyzer view of the test report analyze. 82
A.3 State view of the test report analyzer. 83

List of Tables

3.2 Possible test results depending on the results of two handshakes. 23
3.5 Distribution of the developed test cases. 39
3.7 Scoring system of the testsuite. 45

4.1 Evaluated TLS implementations sorted by their GitHub repository popu-
larity, as of 19th June 2020. 49

4.3 Versions of the analyzed TLS implementations. 51

B.1 Default configurations of analyzed servers and clients. 85
B.2 Overview of the test result evaluation. 86

Bibliography

[1] Hanno Böck, Juraj Somorovsky, and Craig Young. “Return Of Bleichenbacher’s
Oracle Threat (ROBOT)”. In: 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018. Ed. by William Enck and Adrienne
Porter Felt. USENIX Association, 2018, pp. 817–849. url: https://www.usenix.
org/conference/usenixsecurity18/presentation/bock.

[2] N. J. Al Fardan and K. G. Paterson. “Lucky Thirteen: Breaking the TLS and
DTLS Record Protocols”. In: 2013 IEEE Symposium on Security and Privacy. May
2013, pp. 526–540.

[3] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practical (In-)Security of
64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN”. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, October 24-28, 2016. Ed. by Edgar R. Weippl
et al. ACM, 2016, pp. 456–467. doi: 10.1145/2976749.2978423. url: https:
//doi.org/10.1145/2976749.2978423.

[4] This POODLE Bites: Exploiting TheSSL 3.0 Fallback. url: https://www.openssl.
org/~bodo/ssl-poodle.pdf.

[5] Thai Duong and Juliano Rizzo. Here come the XOR ninjas. 2011. url: http:
//www.hpcc.ecs.soton.ac.uk/dan/talks/bullrun/Beast.pdf.

[6] Juliano Rizzo and Thai Duong. “The CRIME attack”. In: ekoparty security confer-
ence. Vol. 2012. 2012.

[7] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1”. In: Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings. Ed. by Hugo Krawczyk. Vol. 1462. Lecture
Notes in Computer Science. Springer, 1998, pp. 1–12. doi: 10.1007/BFb0055716.
url: https://doi.org/10.1007/BFb0055716.

[8] The Heartbleed Bug. url: https://heartbleed.com/.
[9] Technical Advisory – wolfSSL TLS 1.3 Client Man-in-the-Middle Attack (CVE-

2020-24613). url: https://research.nccgroup.com/2020/08/24/technical-
advisory-wolfssl-tls-1-3-client-man-in-the-middle-attack/.

[10] tlsfuzzer. url: https://github.com/tomato42/tlsfuzzer.
[11] Achelos TLS Inspector. url: https://www.achelos.de/de/tls-inspector.html.
[12] TLS-Scanner. url: https://github.com/RUB-NDS/TLS-Scanner.

https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://www.usenix.org/conference/usenixsecurity18/presentation/bock
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1145/2976749.2978423
https://doi.org/10.1145/2976749.2978423
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://www.hpcc.ecs.soton.ac.uk/dan/talks/bullrun/Beast.pdf
http://www.hpcc.ecs.soton.ac.uk/dan/talks/bullrun/Beast.pdf
https://doi.org/10.1007/BFb0055716
https://doi.org/10.1007/BFb0055716
https://heartbleed.com/
https://research.nccgroup.com/2020/08/24/technical-advisory-wolfssl-tls-1-3-client-man-in-the-middle-attack/
https://research.nccgroup.com/2020/08/24/technical-advisory-wolfssl-tls-1-3-client-man-in-the-middle-attack/
https://github.com/tomato42/tlsfuzzer
https://www.achelos.de/de/tls-inspector.html
https://github.com/RUB-NDS/TLS-Scanner

[13] testssl.sh. url: https://testssl.sh/.
[14] Qualys SSl Labs. url: https://www.ssllabs.com/.
[15] How’s My SSL. url: https://www.howsmyssl.com/.
[16] Nimrod Aviram et al. “DROWN: Breaking TLS Using SSLv2”. In: 25th USENIX

Security Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016, pp. 689–706. isbn: 978-1-931971-32-4. url: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/aviram.

[17] TLS Attacker. url: https://github.com/RUB-NDS/TLS-Attacker.
[18] Malena Ebert. “TLS-Compliance: Erstellen einer Testsuite für TLS-Bibliotheken

mit TLS-Attacker”. Ruhr-Universität Bochum, 2018.
[19] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Applications to SSL,

IPSEC, WTLS ...” In: Advances in Cryptology - EUROCRYPT 2002, International
Conference on the Theory and Applications of Cryptographic Techniques, Amster-
dam, The Netherlands, April 28 - May 2, 2002, Proceedings. Ed. by Lars R. Knudsen.
Vol. 2332. Lecture Notes in Computer Science. Springer, 2002, pp. 534–546. doi:
10.1007/3-540-46035-7_35. url: https://doi.org/10.1007/3-540-46035-
7%5C_35.

[20] RFC 6066 - Transport Layer Security (TLS) Extensions: Extension Definitions.
url: https://tools.ietf.org/html/rfc6066.

[21] RFC 7366 - Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). url: https://tools.ietf.org/html/rfc6066.

[22] RFC 7685 - A Transport Layer Security (TLS) ClientHello Padding Extension.
url: https://tools.ietf.org/html/rfc7685.

[23] RFC 8422 - Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS) Versions 1.2 and Earlier. url: https://tools.ietf.org/html/
rfc8422.

[24] RFC 4492 - Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
Security (TLS). url: https://tools.ietf.org/html/rfc4492.

[25] RFC 5246 - TLS Protocol Version 1.2. url: https://tools.ietf.org/html/
rfc8446.

[26] ModifiableVariable. url: https://github.com/RUB-NDS/ModifiableVariable.
[27] What is a Container? url: https : / / www . docker . com / resources / what -

container.
[28] Open Container Initiative. url: https://opencontainers.org/.
[29] Podman. url: https://podman.io/.
[30] docker run Reference. url: https://docs.docker.com/engine/reference/

commandline/run/.
[31] Docker Volumes. url: https://docs.docker.com/storage/volumes/.

https://testssl.sh/
https://www.ssllabs.com/
https://www.howsmyssl.com/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://github.com/RUB-NDS/TLS-Attacker
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7%5C_35
https://doi.org/10.1007/3-540-46035-7%5C_35
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc7685
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc8422
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://github.com/RUB-NDS/ModifiableVariable
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://opencontainers.org/
https://podman.io/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/storage/volumes/

[32] docker build Reference. url: https://docs.docker.com/engine/reference/
commandline/build/.

[33] TLS-Docker-Library. url: https://github.com/RUB-NDS/TLS-Docker-Library.
[34] Maven Repository: Testing Frameworks. url: https://mvnrepository.com/open-

source/testing-frameworks.
[35] TLS-Testsuite GitHub Repository. url: https://github.com/RUB- NDS/TLS-

Testsuite.
[36] TLS-Test-Framework GitHub Repository. url: https://github.com/RUB-NDS/

TLS-Test-Framework.
[37] RFC 5246 - TLS Protocol Version 1.2. url: https://tools.ietf.org/html/

rfc5246.
[38] RFC 6167 - Prohibiting Secure Sockets Layer (SSL) Version 2.0. url: https:

//tools.ietf.org/html/rfc6167.
[39] RFC 7465 - Prohibiting RC4 Cipher Suites. url: https://tools.ietf.org/html/

rfc7465.
[40] RFC 7507 - TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing

Protocol Downgrade Attacks. url: https://tools.ietf.org/html/rfc7507.
[41] RFC 7568 - Deprecating Secure Sockets Layer Version 3.0. url: https://tools.

ietf.org/html/rfc7568.
[42] Applying GREASE to TLS Extensibility. url: https://tools.ietf.org/html/

draft-ietf-tls-grease-04.
[43] Vue.js. url: https://vuejs.org/.
[44] Node.js. url: https://nodejs.org/en/.
[45] Express. url: https://expressjs.com/de/.
[46] mongoDB. url: https://www.mongodb.com/de.
[47] Wireshark. url: https://www.wireshark.org/.
[48] tcpdump. url: https://www.tcpdump.org/.
[49] Docker BuildKit. url: https://www.docker.com/blog/advanced-dockerfiles-

faster - builds - and - smaller - images - using - buildkit - and - multistage -
builds/.

[50] Spotify Docker-Client on GitHub. url: https://github.com/spotify/docker-
client.

[51] TLS-Testsuite-Large-Scale-Evaluator. url: https://github.com/RUB-NDS/TLS-
Testsuite-Large-Scale-Evaluator.

[52] RFC 7301 - Application-Layer Protocol Negotiation Extension. url: https://
tools.ietf.org/html/rfc7301.

https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/
https://github.com/RUB-NDS/TLS-Docker-Library
https://mvnrepository.com/open-source/testing-frameworks
https://mvnrepository.com/open-source/testing-frameworks
https://github.com/RUB-NDS/TLS-Testsuite
https://github.com/RUB-NDS/TLS-Testsuite
https://github.com/RUB-NDS/TLS-Test-Framework
https://github.com/RUB-NDS/TLS-Test-Framework
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6167
https://tools.ietf.org/html/rfc6167
https://tools.ietf.org/html/rfc7465
https://tools.ietf.org/html/rfc7465
https://tools.ietf.org/html/rfc7507
https://tools.ietf.org/html/rfc7568
https://tools.ietf.org/html/rfc7568
https://tools.ietf.org/html/draft-ietf-tls-grease-04
https://tools.ietf.org/html/draft-ietf-tls-grease-04
https://vuejs.org/
https://nodejs.org/en/
https://expressjs.com/de/
https://www.mongodb.com/de
https://www.wireshark.org/
https://www.tcpdump.org/
https://www.docker.com/blog/advanced-dockerfiles-faster-builds-and-smaller-images-using-buildkit-and-multistage-builds/
https://www.docker.com/blog/advanced-dockerfiles-faster-builds-and-smaller-images-using-buildkit-and-multistage-builds/
https://www.docker.com/blog/advanced-dockerfiles-faster-builds-and-smaller-images-using-buildkit-and-multistage-builds/
https://github.com/spotify/docker-client
https://github.com/spotify/docker-client
https://github.com/RUB-NDS/TLS-Testsuite-Large-Scale-Evaluator
https://github.com/RUB-NDS/TLS-Testsuite-Large-Scale-Evaluator
https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301

[53] Nadhem J. AlFardan et al. “On the Security of RC4 in TLS”. In: Proceedings of the
22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013.
Ed. by Samuel T. King. USENIX Association, 2013, pp. 305–320. url: https:
/ / www . usenix . org / conference / usenixsecurity13 / technical - sessions /
paper/alFardan.

[54] Marc Stevens et al. “The First Collision for Full SHA-1”. In: Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part I. Ed. by Jonathan Katz and
Hovav Shacham. Vol. 10401. Lecture Notes in Computer Science. Springer, 2017,
pp. 570–596. doi: 10.1007/978-3-319-63688-7_19. url: https://doi.org/
10.1007/978-3-319-63688-7%5C_19.

[55] Deprecating MD5 and SHA-1 signature hashes in TLS 1.2. url: https://tools.
ietf.org/html/draft-ietf-tls-md5-sha1-deprecate-03.

[56] Enable TLS downgrade sentinel detection. url: https://bugzilla.mozilla.org/
show_bug.cgi?id=1576790.

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7%5C_19
https://doi.org/10.1007/978-3-319-63688-7%5C_19
https://tools.ietf.org/html/draft-ietf-tls-md5-sha1-deprecate-03
https://tools.ietf.org/html/draft-ietf-tls-md5-sha1-deprecate-03
https://bugzilla.mozilla.org/show_bug.cgi?id=1576790
https://bugzilla.mozilla.org/show_bug.cgi?id=1576790

A Figures

RFC 5246

RFC 8446

RFC 5746

RFC 5878

RFC 6176

RFC 7465

RFC 7507

RFC 7568

RFC 7627

RFC 7685 RFC 7905

RFC 7919

RFC 8447

RFC 4492

(a) TLS 1.2

RFC 8446

RFC 5705 RFC 6066

(b) TLS 1.3

Figure A.1: Network of RFCs. 𝑥 −→ 𝑦 denotes that 𝑥 is updated (green) or obsoleted
(red) by 𝑦.

Figure A.2: Analyzer view of the test report analyzer, showing the results of three
implementations.

Figure A.3: State view of the test report analyzer, showing the handshakes of a single
test case for three implementations.

B Tables

Su
pp

or
te

d
C

ip
he

r
Su

ite
s

Su
pp

or
te

d
Ve

rs
io

ns

R
C

4
3D

ES
M

D
5

C
B

C
A

EA
D

N
on

-P
FS

PF
S

T
LS

1.
0

T
LS

1.
1

T
LS

1.
2

T
LS

1.
3

B
or

in
gS

SL
S

✓
✓

✓
✓

✓
✓

✓
✓

✓
C

✓
✓

✓
✓

✓
✓

✓
✓

✓

O
pe

nS
SL

S
✓

✓
✓

✓
✓

✓
✓

✓
C

✓
✓

✓
✓

✓
✓

✓
✓

N
SS

S
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

C
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

s2
n

S
✓

✓
✓

✓
✓

✓
✓

C
✓

✓
✓

✓
✓

✓
✓

m
be

d
T

LS
S

✓
✓

✓
✓

✓
✓

✓
C

✓
✓

✓
✓

✓
✓

✓

R
us

tls
S

✓
✓

✓
✓

B
ot

an
S

✓
✓

✓
C

✓
✓

✓
✓

✓

Li
br

eS
SL

S
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
C

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

w
ol

fS
SL

C
✓

✓
✓

G
nu

T
LS

S
✓

✓
✓

✓
✓

✓
✓

✓
C

✓
✓

✓
✓

✓
✓

✓
✓

M
at

rix
SS

L
C

✓
✓

(✓
)

(✓
)

(✓
)

✓

tls
lit

e-
ng

S
✓

✓
✓

✓
✓

✓
✓

✓
✓

B
ea

rS
SL

S
✓

✓
✓

✓
✓

✓
✓

✓

Table B.1: Default configurations of the analyzed server (S) and client (C) implemen-
tations. Empty fields indicate that a implementation does not support the
property.

TLS 1.2 TLS 1.3

Categories 𝛼 𝛽 𝛾 𝛼 𝛽 𝛾
Failed tests 10 S, 8 C 12 S, 9 C 6 S, 3 C 8 S, 13 C 3 S, 2 C 0 S, 2 C

BoringSSL S ✗ (3) ✗ (3) ✗ (3)
C ✗ (1) ✗ (1) ✗ (4) ✗ (2)

OpenSSL S ✗ (2) ✗ (4) ✗ (1) ✗ (2) ✗ (2)
C ✗ (1) ✗ (3) ✗ (1) ✗ (1)

NSS S ✗ (4) ✗ (4) ✗ (2) ✗ (3)
C ✗ (3) ✗ (1) ✗ (2) ✗ (5) ✗ (2)

s2n S ✗ (8) ✗ (6) ✗ (1) – – –
C ✗ (8) ✗ (3) ✗ (1) – – –

mbed TLS S ✗ (2) ✗ (2) ✗ (1) – – –
C ✗ (3) ✗ (1) – – –

Rustls S ✗ (2) ✗ (6) ✗ (2) ✗ (6) ✗ (3)

Botan S ✗ (2) ✗ (2) ✗ (1) – – –
C ✗ (2) ✗ (2) – – –

LibreSSL S ✗ (1) ✗ (5) ✗ (1) – – –
C ✗ (1) ✗ (2) ✗ (2) ✗ (5)

wolfSSL C ✗ (7) ✗ (2) ✗ (1) – – –

GnuTLS S ✗ (1) ✗ (4) ✗ (1) – – –
C ✗ (3) ✗ (1) ✗ (7)

MatrixSSL C ✗ (6)

tlslite-ng S ✗ (2) ✗ (3) ✗ (2) ✗ (2)

BearSSL S ✗ (6) ✗ (4) ✗ (1) – – –

Category 𝛼: Expected Alert ̸= Received Alert
Category 𝛽: Expected Handshake Termination
Category 𝛾: Expected different Behavior

Table B.2: Overview of the test result evaluation. It shows how many tests belonging
to a certain test category (A, B, C) and TLS version failed. Empty fields
indicate that all tests passed.

	Introduction
	Motivation
	Related Work
	Contribution

	Background
	Transport Layer Security Protocol
	TLS 1.2
	Extensions

	TLS 1.3
	Extensions

	TLS-Attacker
	Specifying TLS message flows
	Executing TLS message flows
	Sending TLS messages
	Receiving TLS messages

	Docker
	TLS-Docker-Library
	Software testing
	JUnit 5

	Implementation
	Design
	Test Result
	Test Framework
	Command-Line Interface
	Conditional Test Execution
	Architecture
	Test Derivation
	Negotiated Cipher Suite
	Fragmentation

	Testsuite Execution
	Modeling a Test Case
	GUI support in IDEs
	Preparation Phase
	Command-Line Arguments

	Test Report

	Testsuite
	Implemented Tests
	RFC Compliance Tests
	Length Field Tests

	Report Analyzer
	Score Calculation

	TLS-Docker-Library
	Docker Images – Build System
	Docker Images – Entrypoints
	Java Library

	Evaluation
	Setup
	Results
	Multiple Implementations - Newest Versions
	Overall Results
	Default Configuration
	Server (TLS 1.2)
	Server (TLS 1.3)
	Client (TLS 1.2)
	Client (TLS 1.3)
	Client and Server (TLS 1.2)
	Client and Server (TLS 1.3)
	Other Observations

	Same Implementation - Multiple Versions
	tlslite-ng Server
	Botan Client
	NSS Client

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography
	Figures
	Tables

