
TLS-Anvil: Adapting Combinatorial Testing for TLS Libraries

Marcel Maehren1, Philipp Nieting1, Sven Hebrok2, Robert Merget1, Juraj Somorovsky2, and Jörg
Schwenk1

1Ruhr University Bochum
2Paderborn University

Abstract

Although the newest versions of TLS are considered secure,
flawed implementations may undermine the promised security
properties. Such implementation flaws result from the TLS
specifications’ complexity, with exponentially many possible
parameter combinations. Combinatorial Testing (CT) is a
technique to tame this complexity, but it is hard to apply to
TLS due to semantic dependencies between the parameters
and thus leaves the developers with a major challenge referred
to as the test oracle problem: Determining if the observed
behavior of software is correct for a given test input.

In this work, we present TLS-Anvil, a test suite based on
CT that can efficiently and systematically test parameter value
combinations and overcome the oracle problem by dynam-
ically extracting an implementation-specific input parame-
ter model (IPM) that we constrained based on TLS specific
parameter value interactions. Our approach thus carefully
restricts the available input space, which in return allows us
to reliably solve the oracle problem for any combination of
values generated by the CT algorithm.

We evaluated TLS-Anvil with 13 well known TLS imple-
mentations, including OpenSSL, BoringSSL, and NSS. Our
evaluation revealed two new exploits in MatrixSSL, five is-
sues directly influencing the cryptographic operations of a
session, as well as 15 interoperability issues, 116 problems
related to incorrect alert handling, and 100 other issues across
all tested libraries.

1 Introduction

Transport Layer Security (TLS) is a cryptographic protocol
that provides encryption, authentication, and integrity to appli-
cation data. Due to many attacks and weaknesses discovered
in the recent years [3, 7, 8, 10, 18, 19, 53, 59, 65], the cur-
rently recommended versions of TLS are 1.2 and 1.3 [40,
51]. Besides the main standards, there is a multitude of ac-
companying RFCs, which define further TLS extensions and
cryptographic algorithms for the protocol [41–50, 52]. These

RFCs are the result of continuous refinements throughout mul-
tiple public draft versions. Especially in the case of TLS 1.3,
the development of drafts was strongly influenced by feed-
back from the community. The knowledge of the research
community has been used to emphasize security and interop-
erability critical statements in the RFCs using the terminology
for absolute requirements from RFC 2119 [39], which are
marked with the keywords MUST, SHALL, or REQUIRED.
These requirements prescribe specific TLS behavior, for ex-
ample, by defining protocol flows, record layer processing,
or exact alert messages. These requirements go far beyond
solely functional aspects, and TLS libraries must adhere to
the specifications in all critical aspects. Otherwise, missing
compliance can lead to interoperability issues or even critical
security bugs.

On the Complexity of TLS Libraries The high number of
protocol versions, extensions, and cryptographic algorithms
increases the complexity of TLS and makes implementing a
secure TLS library very challenging. For backward compati-
bility reasons, standard TLS libraries need to support multiple
TLS versions starting from TLS 1.0 and also outdated cryp-
tographic algorithms such as 3DES. The complexity of TLS
and the backward compatibility requirements led to several
critical attacks. For example, Böck et al. discovered that the
at the time almost 20-year-old Bleichenbacher [8] vulnera-
bility was still widespread among TLS implementations of
the most prominent websites on the internet; some of the dis-
covered vulnerabilities had subtle dependencies to seemingly
unrelated parts of the code, like the mode of operation [10].
Similarly, a study by Merget et al. [36] showed that sometimes
CBC padding oracle vulnerabilities only surface for specific
negotiated parameters; a different key exchange algorithm
in a cipher suite could already change the code flow enough
to reveal or hide a vulnerability in the otherwise unrelated
record layer. Thus despite the huge amount of research and
careful specification of the protocol, TLS libraries are still
vulnerable to subtle attacks exploiting complex parameter
combinations. This leads to the following research question:

1

RQ1: How well do current TLS libraries perform
in regards to security, interoperability, and confor-
mance considering the complexity of requirements
from the TLS specification and scientific literature?

Test Oracle Problem Software tests stimulate a system un-
der test (SUT) with inputs and observe the reaction of the
system. To provide a meaningful test result, software tests
must overcome the test oracle problem. Barr et al. define the
test oracle problem as follows [4]:

Given the input for a system, the challenge of dis-
tinguishing the corresponding desired, correct be-
havior from potentially incorrect behavior is called
the "test oracle problem".

For a complex system, this problem is already hard for func-
tional tests, where the goal is to determine if a program com-
putes the correct values. For the TLS protocol, this would
be tests that check if an implementation is interoperable and
finishes the handshake correctly when provided with valid
cryptographic messages. It becomes even harder if the non-
functional property "security" should be tested – this property
must be preserved even for all combinations of invalid inputs.

Previous attempts to solve the test oracle problem for the
TLS protocol defined the "desired, correct behavior" of a
TLS implementation as having exactly the same output as
a reference implementation – miTLS in [56] and nqsb-TLS
in [57] and [23]. This approach practically failed because it
produced a very high false positive rate as in TLS, there are
often multiple valid responses to a specific input, but every
deviation from the reference implementation was treated as a
flaw. Ultimately, the authors only attested that behavioral dif-
ferences between libraries could be observed [23, Sec. 6][56,
Sec. 7][57, Sec. 7].

A trivial approach to overcome false positives is that a
human specifies the correct behavior for every combination
of input parameters. While this may be feasible to check
some basic security properties (e.g., the strongest encryption
algorithm is always chosen during the TLS handshake or that
dangerous features are deactivated), the exponential number
of tests needed for a thorough coverage cannot be generated
manually. For example, for the parameters in the scope of this
paper (Table 3), in the worst case, we would have to manually
write 18,743,296 variations of the same server test.

Test Oracle Automation Test oracles can be derived from
formal specifications of the system, from assertions in the
source code, from pseudo-oracles, from regression tests,
or from invariants in the program code detected automat-
ically [4]. These approaches either need special forms of
formal specifications not available for TLS, or may only be
used to test functional properties. Approaches to automati-
cally generate test oracles from human-readable specifications
either suffer from exponential growth of the resulting formal

description [37], or need a restricted natural language [55].
Without these restrictions, human interaction seems necessary
to define the correct outcome. In this case, automation can be
achieved by defining abstract test templates from which many
test cases can be generated automatically.

Combinatorial Testing CT is a widely known technique
to select combinations from a set of parameters. In CT, a
test is hence designed such that the same test can be invoked
with different values of these parameters. These tests are
referred to as parameterized tests or test templates. Designing
such test templates can be far from trivial as each template
requires an analysis that identifies which parameters can be
parameterized. Even given such test templates, testing all
combinations of test parameters is usually still infeasible since
the number of test cases grows exponentially. One way to
reduce the number of possible parameter combinations is a CT
method called t-way testing [31]. In t-way testing, all possible
combinations of up to t parameters out of the n parameters
are used for testing. If t < n, the number of tests can be
further reduced by including two or more t-sets in the same
test vector. If t << n, this results in a significant reduction in
the number of tests.

In general, CT is a suitable choice for developing precise
test inputs with high flexibility to trigger deep TLS corner
cases. However, using this approach for TLS evaluations
yields further challenges which have been left unsolved in the
previous scientific studies [23, 56, 57].

Challenging Parameter Interactions A naive approach to
utilize CT would blindly combine different parameter values.
However, in a complex protocol like TLS, parameters have
dependencies, and not all potential parameter values are use-
ful for a given test. For example, a test that evaluates if a
library can complete the handshake with a given cipher suite
should choose a cipher suite that is supported by the SUT. A
test that analyzes the elliptic curve computations performed
by an SUT must further limit its choice to an elliptic curve
cipher suite. While these two examples are still reasonably
manageable, the parameter value interactions can quickly
become complex depending on the test context. For exam-
ple, consider a test for the client-side validation of signatures
generated by a server. In that case, there is an interaction
between the selected cipher suite, signature algorithm, and
server certificate that ultimately affects signature validity. A
chosen combination of these three parameters may be invalid
regardless of the specific byte values of the signature. If these
dependencies are ignored, the test result on the SUT does
not correspond to the validation of the digital signature but
to the invalid parameter choice, which would render the test
oracle unreliable. These challenges result in another research
question:

RQ2: Can reliable test oracles for parameterized
test templates with a large parameter space for TLS

2

be defined with a low false positive rate?

Solving the Test Oracle Problem for TLS We propose a
novel approach for solving the test oracle problem for TLS
consisting of four components:

1. We use test templates which can be parameterized to au-
tomatically generate many test cases. Each test template
tests a requirement based on an RFC. The parameteriza-
tion of the template enables the use of CT.

2. We define a test oracle for each test template that can
decide if the selected requirement is fulfilled for a given
input and output; this reflects the flexibility inherent to
TLS and mitigates the high false positive rate of previous
approaches.

3. We systematically restrict the Input Parameter Model
(IPM) of test templates to ‘reasonable’ values. In the first
step, feature extraction is used to restrict the parameter
values to values supported by the SUT. Then semantic
dependencies between test parameters are taken into
account to derive a semantically sound subset for the
IPM.

4. We use t-way combinatorial testing to minimize the num-
ber of test cases while still covering all t-combinations
of parameters.

This answers RQ2 in the affirmative but leads to a new re-
search question:

RQ3: How practical and effective is our methodol-
ogy when considering complex TLS libraries?

TLS-Anvil To demonstrate the effectiveness of our method-
ology, we implemented a TLS test suite called TLS-Anvil that
uses CT to derive test cases from test templates. TLS-Anvil
is capable of testing the compliance of a server or client im-
plementation with the protocol specification. It can be used
by developers to test their implementations as well as pen-
etration testers to estimate the quality of a TLS stack. We
built TLS-Anvil upon TLS-Attacker [60], TLS-Scanner [61],
JUnit5 [27], and coffee4j [17, 21]. TLS-Attacker is a well-
established framework for the analysis of TLS libraries, while
the coffee4j framework allows us to use t-way testing with a
configurable strength t, enabling us to find hidden bugs in the
implementation. To create test templates, we carefully ana-
lyzed TLS-related RFCs [40–52] for absolute requirements
which are marked with the keywords MUST, SHALL or RE-
QUIRED [39]. Additionally, we integrated known state ma-
chine vulnerabilities from the literature [54] to guide our state
machine tests beyond the implicit definition of a TLS state
machine in the RFCs. We then created test templates for the
extracted requirements for our test suite.

To demonstrate the effectiveness of TLS-Anvil, we de-
veloped a library of docker images that allows researchers
to quickly start TLS clients and servers in different ver-
sions, which is of general interest for TLS developers and
researchers independent of the test suite. Our docker library
contains around 700 versions of 23 different implementations
and provides a Java interface to start and stop TLS imple-
mentations easily. We used our docker library to evaluate 13
widely used TLS libraries.

Results Although TLS is arguably the mostly researched
cryptographic protocol, TLS-Anvil was able to find five is-
sues that affect cryptographic computations and three imme-
diately exploitable vulnerabilities in the newest TLS library
versions (Table 2). These included a TLS server authenti-
cation bypass (reported independently), a CBC padding or-
acle resulting from invalid buffer boundary validation, and
a Denial-of-Service vulnerability. In addition, TLS-Anvil
successfully found 231 other RFC violations, including 15
interoperability issues. Especially the security and cryptogra-
phy issues indicate a blind spot in current testing approaches
as the considered libraries are generally well-tested yet these
issues are present. Thus, in answering RQ1 we must state
that although TLS libraries are primarily well-maintained, the
security of the overall ecosystem will profit from systematic
testing. Our results also answer RQ3 since various RFC vi-
olations could be found within a reasonable execution time.
Additionally, the extent of the test suite can be scaled based
on the use case by adjusting the t parameter used for CT.

Contributions We make the following contributions:

• We propose a novel methodology to solve the test oracle
problem for TLS through a technique based on parame-
terized test cases derived from test templates and careful
constraints for the input space. This methodology can
be adapted to other cryptographic protocols.

• We develop TLS-Anvil, a test suite for TLS 1.2 and
TLS 1.3 libraries, which provides a high degree of flex-
ibility, an extendable architecture, and application pro-
gramming interfaces (APIs) to write test templates for
the TLS protocol efficiently. TLS-Anvil uses t-way test-
ing to enhance performance.

• We demonstrate that t-way testing is an effective tech-
nique for testing complex security protocols as it found
issues even for already highly tested TLS libraries.

• We found and disclosed two new vulnerabilities (the
third vulnerability was already reported independently)
and five cases where cryptographic functionalities in
TLS could be illictly affected as well as additional 231
RFC violations.

• We provide all of our developed tools as open-source
software.

3

Responsible Disclosure We responsibly disclosed all of
our findings to the respective developers.

2 Background
2.1 Transport Layer Security (TLS)
The TLS protocol allows two communicating peers to
establish a secure channel. To this end, the peers
perform a TLS handshake to negotiate cryptographic
parameters – defined in so-called cipher suites (e.g.,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) – and de-
rive TLS session keys. The negotiated parameters and keys
are then used within the channel to protect the exchanged
messages’ confidentiality, integrity, and authenticity.

There are two widely used and recommended TLS versions:
TLS 1.2 [40] and TLS 1.3 [51].

TLS 1.2 A regular TLS 1.2 handshake with DH key ex-
change and server authentication requires two round trips [40].
The client starts the handshake with the ClientHello mes-
sage, which contains the TLS version, a list of proposed TLS
cipher suites, named groups for the key exchange, and exten-
sions. The server responds with four handshake messages.
With the ServerHello message, the server selects the TLS
version and other cryptographic parameters from the pro-
posals of the client. The server then sends a Certificate
message that contains the X.509 certificate chain with the
server’s public key. The server uses its private key to au-
thenticate a freshly generated ephemeral DH public key and
sends it within the ServerKeyExchange message. Finally,
the server sends the ServerHelloDone message to indicate
the end of the flight. The client continues the handshake with
a ClientKeyExchange message, which contains the client’s
DH share. From now on, both parties can compute a shared
secret, called premaster secret, which is used to derive all cryp-
tographic keys. The client then sends a ChangeCipherSpec
message to notify the server about switching to an encrypted
state and sends a Finished message. The server finalizes
the handshake by sending its own ChangeCipherSpec and
Finished messages.

TLS 1.3 The newest version of TLS is TLS 1.3 [51]. In
contrast to TLS 1.2, it usually only needs one RTT for its
handshake to establish cryptographic keys. This is achieved
by reordering the messages and adding new extensions.

TLS 1.3 attempts to negotiate a shared secret already
with the ClientHello and ServerHello messages that
contain protocol parameters along with DH shares. Both
parties then directly compute additional secrets and be-
gin to encrypt and protect messages. The server then
sends an EncryptedExtensions, Certificate, and
CertificateVerify message. The CertificateVerify
message contains a signature over previously exchanged mes-
sages, verifiable with the public key from the server certifi-

cate. The last message the server sends in the handshake is a
Finished message, which is similar to the Finished mes-
sage in TLS 1.2. The client finally also sends a Finished
message to complete the handshake.

Alert Protocol The TLS protocol has a mechanism to com-
municate errors to the peer called alerts. TLS RFCs specify
more than 30 different alerts and how to use them in specific
exceptional cases. For example, the Close Notify alert no-
tifies the peer about closing the underlying connection, or
Bad Record MAC informs the peer that the received record
message contains an invalid authentication code. Correct han-
dling of alert messages is critical for the security of a TLS
library, as they can provide information to a potential attacker
that can be used to break the security goals of TLS [36].

2.2 Software Testing
Testing In the general testing terminology, the evaluated
software is referred to as the System Under Test (SUT). Test-
ing an SUT can be performed on various levels. Unit tests
are performed on a very low level and focus on testing the
functionality of isolated functions. To do so, Unit tests need
access to software internals. System tests evaluate software
as a whole, with all of its interacting submodules. The test
inputs are the external inputs of the software; thus, system
tests are suitable for black-box testing. A complete set of
inputs for an SUT is called a test case. The collection of all
test cases which are executed against the SUT is called test
suite. For parameterized tests, test cases are instantiated from
test templates, which the test developer writes.

Test Oracles To classify the result of a test case, the devel-
oper of the test template defines a test oracle [24]. The test
oracle decides if the behavior of an SUT is appropriate for a
given input and if the SUT passed or failed the test. In prac-
tice, this decision can be challenging, which is also known as
the test oracle problem [4].

Combinatorial Testing Some test failures may only occur
due to an interaction between different input parameters, so
they can only be detected by performing tests that cover all
combinations of parameters. In practice, this is often not
feasible as complex software can have a multitude of parame-
ters with many different values, resulting in an exponential
growth of generated test cases. However, research in the field
of software testing has shown that most observed failures are
not the result of an interaction of all possible parameters but
rather a subset of them [32, 38]. This led to the concept of
t-way tests.

A t-way test covers all combinations of parameter values
for each subset of t parameters. All possible test parameters
and their values are predefined in a so-called Input Parameter
Model (IPM).

Generating an ideal test suite, i.e., the minimum set of test
cases required to cover all t-way interactions, is challenging.

4

Still, modern algorithms are often able to provide a good test
suite within an acceptable timeframe. To avoid the creation
of nonsensical test inputs and to speed up the generation
of the test suite, many CT algorithms provide the option to
define constraints on specific parameter value combinations
manually and thus exclude combinations that do not produce
meaningful test cases. If the test inputs are chosen carefully,
even a CT with a small value for t can achieve a high bug
detection rate while maintaining a comparatively small test
suite [30].

3 Methodology

In this paper, we propose a new testing methodology for TLS
libraries that is of general interest for testing cryptographic
protocols. It leverages the power of t-way testing to system-
atically evaluate the complex parameter interactions of the
libraries. The test oracle problem is solved by defining test
templates, from which the different test cases for t-way testing
can be generated automatically. Many values of TLS param-
eters are optional: E.g., not all cipher suites, and extensions
must be supported. Hence, for each tested library, we perform
feature extraction using TLS Scanner. Upon execution, an
Input Parameter Model (IPM) is created for each test tem-
plate that is specific to the tested implementation such that
the oracle problem is solvable for all possible test cases of the
template.

3.1 Test Templates for Reliable Test Oracles
A test template defines the desired outcome of all test cases
derived from it – thus, it represents a test oracle that is appli-
cable specifically to its resulting test cases. Each test template
checks a specific requirement. These requirements are de-
rived from TLS-related RFCs and known state machine bugs.
For the test templates to be reliable, the conditions listed be-
low must be met. In Section 4 we give the details on which
requirements have been considered and how to fulfill these
requirements.

Combinatorial Testing (CT) To enable CT, the template
must allow for the insertion of all reasonable parameter com-
binations, even in seemingly unrelated aspects of the test
input.

General IPM In order to create an IPM for CT, concrete
parameter values have to be chosen for each parameter for
a given test template. For parameters that only have a lim-
ited number of values, all values can be considered, while
for parameters with potentially many different values, indi-
vidual, interesting values have to be chosen. For example, a
parameter could model the addition of a specific extension as
a boolean parameter. Here, both possible values ’true’ and
’false’ can be considered as parameter values. In another ex-
ample, the specific fragmentation of a message as a parameter

has a combinatorial explosion in possible parameter values,
such that a limited number of specific, likely fault-inducing,
parameter values have to be chosen.

Semantically Sound IPM For a given parameter, all possi-
ble parameter values must have the same semantic, e.g., they
are either all valid or all invalid within the context of the tested
requirement. However, some combinations of parameter val-
ues might change the semantics of another parameter value.
For example, in TLS, RSA signatures can only be used if
an RSA certificate is used in the connection. We, therefore,
carefully model constraints of parameter values and exclude
combinations of parameters where the interaction of specific
values changes their semantics.

SUT-Specific IPM Real-world implementations commonly
do not implement all possible features of a protocol, but only
a subset of them. While a specific value might objectively be
valid for a given parameter, in the context of a concrete System
Under Test (SUT) the parameter might be invalid because the
respective feature is not supported. The SUT-specific IPM is
therefore generated after the feature extraction.

3.2 Limiting the number of test cases

The subset of inputs defined by the SUT-specific IPM is still
too large for exhaustive testing. However, now t-way tests
can be used to automatically explore interesting parameter
value combinations of the input space while still being able
to solve the oracle problem at any time, as the test template
knows the semantics of the parameter values.

3.3 Test Suite Execution

The execution of the test suite then follows three phases for
each test template: An IPM creation, execution, and validation
phase.

IPM Creation In this phase, the test suite determines which
features an implementation supports and chooses concrete
values for the IPM. After that, constraints are placed on the
parameter values of the IPM to exclude semantic changing
parameter value combinations.

Template Execution With the previously created IPM, the
test suite can then create individual test cases using t-way
testing for a provided strength. The generated test cases are
then executed.

Validation In the validation phase, the test oracle is exe-
cuted, which evaluates whether the execution of a test case
was successful or not. Due to the constraining steps made
before, the evaluation of the test oracle can achieve high relia-
bility. The determined results are then gathered and presented
to the user.

5

4 TLS-Anvil

We implemented the proposed methodology in a test suite
called TLS-Anvil. Our test suite is capable of perform-
ing black box system tests with TLS clients and servers
to evaluate protocol compliance. TLS-Anvil is based on
TLS-Attacker [60], TLS-Scanner [61], coffee4j [17], and
JUnit 5 [27]. TLS-Attacker was chosen as it provides a large
TLS feature set and was written with testing in mind, allow-
ing access to various internals of a TLS connection [58]. We
use TLS-Scanner to determine the supported features of a
tested library. We then use this information to constrain the
parameter values to derive an SUT-specific IPM. Coffee4j
was chosen as a framework for t-way testing, as it already
implements many popular algorithms. JUnit 5 was chosen as
a testing framework because it is state of the art for software
testing in Java.

TLS-Anvil consists of an execution framework and a collec-
tion of test templates. Each test template is implemented as an
individual JUnit test that evaluates an individual requirement,
such as the compliance to one specific RFC statement. In our
analyses, we considered a range of TLS related RFCs [40–52]
(see Table 7), as well as known state machine vulnerabilities
from scientific literature [54].

4.1 Architecture

The overall architecture of TLS-Anvil is visualized in Figure 1
and follows our methodology from Section 3.

Test Templates The test template defines the messages to
be sent to the SUT and their fields based on the requirement.
To classify the observed behavior of the SUT for a test case
derived from the test template, the template contains a val-
idation function that effectively implements the logic of its
test oracle. Since test templates are independent, they can
be run in parallel. The body of a test template is focused on
the actions of the test, i.e., the exchanged messages, while
the parameters and their constraints are provided as Java an-
notations. Additional metadata, such as a reference to an
RFC section, can also be defined using annotations. For the
interested reader, we provide an example for the creation of a
test template in the TLS-Anvil GitHub repository.1

Feature Extraction Before any test templates get executed,
TLS-Anvil runs pretests based on TLS-Scanner that collect
the supported features of the SUT. This information guides
the selection of applicable test templates and the constraining
process for the IPMs.

Template Selection Based on the determined capabilities,
we filter out test templates that can not be applied at all to the
SUT due to a missing feature. After determining applicable

1https://github.com/tls-attacker/TLS-Anvil

test templates, TLS-Anvil continues with the selection of
appropriate parameter values for the IPM.

Parameter Value Selection The values for each parameter
are selected based on the supported features, as well as on the
selected template. For example, if a template wants to test
an ECDH feature, the parameter values for the cipher suite
parameter will only contain cipher suites supported by the
implementation with ECDH key exchange.

Constraining IPM After the values for each parameter
were selected, the constraints are added upon the different
parameter values, such that the semantics of parameter values
do not change. For example, RSA certificates should not be
used with ECDSA signature algorithms, as this combination
is an illegal selection. Subsequently, the IPM only results in
benign values. However, if a test template aims to enforce a
specific illegal value (combination), it is possible to disable
individual constraints. It is further possible to model a non-
conformity as a parameter of the IPM, for example, to test
different undefined values for a field. Table 3 summarizes the
parameters that typically form an IPM in TLS-Anvil.

Test Case Input Creation Given the final and constrained
IPM, we use coffee4j to generate the test inputs. We con-
figured coffee4j to use the IPOG algorithm to determine the
test inputs, as it was designed for efficient t-way tests with
t > 2 [35].

Test Template Execution Once coffee4j determined the
test inputs, JUnit repeatedly triggers an instantiation of the
test template, each time with a different parameter set. This
creates many individual test cases. For each test case, TLS-
Anvil sets up a configuration to enforce the chosen parameters
and a workflow trace for TLS-Attacker, i.e., a sequence of
TLS messages to be sent and received. TLS-Anvil then exe-
cutes the workflow.

Validation Afterward, the template’s validation logic is
called for the test case, which yields a result of the test ora-
cle. This validation usually consists of two components: a
template-specific validation and a call to the validator. On
the template level, the test oracle can evaluate message fields
specifically affected by the underlying requirement. For ex-
ample, the test oracle could validate a received signature to
ensure that the peer computed it correctly. The validator, in
contrast, bundles evaluation steps shared among a larger num-
ber of test templates. This includes evaluating the observed
message flow with respect to the protocol specification, which
is crucial for a comprehensive test oracle. The validator also
accounts for the influence of parameter values on the mes-
sage flow and allowed deviations such as optional messages.
The test template can also influence the validator by request-
ing additional analysis steps, like checking for specific alert
messages or the termination of the TCP connection.

6

https://github.com/tls-attacker/TLS-Anvil

SUT
(e.g. - OpenSSL, GnuTLS, mbedTLS, Botan, LibreSSL, MatrixSSL)

Parameter
Combination

Creation
(coffee4j)

Template
Selection

Parameter
Value

Selection

Test Case
Execution

(TLS-
Attacker)

Test
Oracle

Report

Feature
Extraction

(TLS-
Scanner)

Constraining
IPM

IPM Creation Phase Execution Phase Analysis Phase

Figure 1: Overview of the execution of a test template in TLS-Anvil beginning with the feature extraction and selection of
the template followed by the creation of the constrained IPM, the generation of concrete test inputs based on it, and finally
the execution with TLS-Attacker and evaluation through the test oracle. Feature extraction and test case execution steps use
state-of-the-art tools – TLS-Scanner and TLS-Attacker – to send TLS messages to the SUT. Elements marked in green depict the
contributions of this paper.

When the last set of parameters for a test template has
finished, TLS-Anvil composes a conclusive result for the test.

Report Evaluation Once all test templates have been exe-
cuted, the individual results are collected in a final step that
yields a test report. TLS-Anvil provides a small web applica-
tion to analyze the results of the individual test cases, with
the ability to inspect each performed TLS handshake on TCP
message level.

4.2 Requirement Selection

In order to write test templates for TLS-Anvil, we had to
select requirements for the evaluation.

Explicit Requirements from RFCs As the main source
for our test requirements, we manually analyzed 13 TLS
RFCs including those that define the most prominent pro-
tocol versions, TLS 1.2 and 1.3. A complete list with sum-
maries of the scopes of the individual RFCs can be found
in Table 7. Throughout these RFCs, we specifically focused
on instances where the standard defines, according to RFC
2119 [39], absolute requirements by using the terms MUST,
SHALL, REQUIRED, or absolute prohibitions by using the
terms MUST NOT or SHALL NOT. These requirements re-
duced the risk of misinterpretation by us, as they explicitly
describe demands that have to be met by the implementation.

We then filtered out statements of the RFCs that solely
affect future extensions of the protocol and are not directed at
implementations of the protocol. Furthermore, some require-
ments may be deprecated by newer RFCs, and therefore were
excluded as well. As an example, the TLS 1.2 RFC imposes
restrictions on how an implementation has to process SSL2
messages. However, RFC 6176 deprecated SSL2 entirely

due to its weak cryptography, rendering these requirements
meaningless. Additionally, we filtered requirements that are
not testable with our approach. This mostly applies to re-
quirements that can not (reliably) be tested without access to
the internals of a library, such as timing-related vulnerabili-
ties [19] but also restrictions imposed on the sender which do
not mandate a reaction by the peer if violated. For the scope of
the study, we excluded all requirements related to certificates
and certificate validation with modified X.509 structures and
chains as these have already been in the scope of previous
research [11, 16, 29, 66]. We also excluded requirements
related to renegotiation and 0-RTT related tests since not all
sample implementations provide the required level of control
over the client or server to test these requirements properly.
We provide an overview of the number of covered require-
ment keywords per RFC in Section 4.3. Note that we only
depict the numbers for MUST and MUST NOT keywords
as the other mandatory keywords, REQUIRED and SHALL
(NOT), are seldomly used throughout the considered RFCs.
Only RFC 6066 makes extensive use of SHALL to impose
restrictions on certificate handling.

Length Field Tests A single requirement may mandate the
creation of multiple test templates. A prime example of this
are tests with manipulated length fields within messages. RFC
5246 defines the requirement to reject such invalid messages
only once, but a test template can be written for each individ-
ual length field of any TLS 1.2 message. Due to the increased
number of semantically very close resulting tests, we subse-
quently group these length field tests in our overviews.

Implicit Requirements As expected for any standard, not
all crucial aspects of the TLS protocol are sufficiently pointed
out in the RFCs. For example, the TLS 1.2 RFC states that an

7

implementation must validate the peer’s Finished message,
including its contained cryptographic checksum. However, it
does not mark the verification of a Message Authentication
Code (MAC) as mandatory in terms of RFC 2119. Yet the
RFC does define an alert to be used upon receiving a message
with an invalid MAC resulting in an implicit requirement.
We, therefore, also included specific implicit requirements in
our test templates. These requirements account for 47 test
templates of the 408 test templates we implemented overall.

State Machine Tests While the TLS RFCs define that mes-
sages sent outside of the expected order must be rejected, it
does not define a concrete state machine for an implementa-
tion. For the most recent version, TLS 1.3, a figure of a state
machine was included in the RFC but it is far from complete.
Ultimately, requirements spread across different RFCs exist
that affect the state machine. As explicit requirements exist
that mandate tests for the correctness of the state machine, we
wrote a set of test templates based both on RFC statements
and on known state machine bugs from the literature [54]. As
for length field tests, we subsequently group these tests in a
separate category.

4.3 Resulting Test Templates

After processing all of the RFCs and related literature men-
tioned in Section 4.2, our test suite consisted of 408 unique
test templates of which 361 were able to use combinatorial
testing. The other templates account for requirements for
which the behavior of an SUT can be evaluated but not influ-
enced through parameter choices, such as the evaluation of
a received ClientHello, which is the very first message of
the protocol. Table 1 provides a detailed breakdown of the
mandatory keywords of the considered RFCs according to our
selection process. In Table 6, we also provide an overview
of the number of test templates implemented for clients and
servers for each RFC.

For the parameters in our test templates we considered
various aspects of a TLS connection. These parameters can
be simple properties, like the tested cipher suite or if an op-
tional extension is added or not, but can also cover specific
properties, for example, the bit position at which the test tem-
plate invalidates a MAC. In Table 3, we list the parameters
that we consider within our IPM’s in client and server test
templates. A default set of parameters is used if a template
does not explicitly define its parameters. A test template can
further define value constraints for all parameters available if
only some of their values are meaningful in their context. All
test templates share a general set of constraints that filter out
generally invalid combinations of values.

RFC Σ X × � � /∈ � %
5246 118 37 81 10 15 43 13 31.4
8446 255 156 99 2 0 60 37 61.2
8701 7 4 3 0 0 3 0 57.1
7507 3 2 1 0 0 1 0 66.7
6066 22 6 16 1 1 12 2 27.3
7568 3 3 0 0 0 0 0 100.0
7919 12 11 1 1 0 0 0 91.7
7465 1 1 0 0 0 0 0 100.0
7366 2 1 1 0 0 1 0 50.0
8422 34 16 18 1 0 15 2 47.1
7685 1 0 1 0 0 0 1 0.0
6176 1 0 0 0 0 0 1 0.0
7457 0 0 0 0 0 0 0 -

5246 18 11 7 1 2 1 3 61.1
8446 73 38 35 4 0 11 20 52.1
8701 4 2 2 0 0 1 1 50.0
7507 2 1 1 0 0 1 0 50.0
6066 6 2 4 0 0 3 1 33.3
7568 4 4 0 0 0 0 0 100.0
7919 4 3 1 0 0 1 0 75.0
7465 2 2 0 0 0 0 0 100.0
7366 3 1 2 0 0 1 1 33.3
8422 10 7 3 0 0 3 0 70.0
7685 1 1 0 0 0 0 0 100.0
6176 3 2 1 0 0 0 1 66.7
7457 0 0 0 0 0 0 0 -

Table 1: Overview of the categorized MUST (top) and MUST
NOT (bottom) keywords. Σ: number of keywords contained
overall;X: covered; ×: not covered; �: protocol extensions;
�: deprecated; /∈: out of scope; �: not testable with our
approach; %: percentage covered - The other mandatory
keywords, REQUIRED or SHALL (NOT), are rarely used
in RFCs. Note that RFC 7457 summarizes known attacks
without explicit requirements based on these keywords

5 TLS-Docker-Library

Testing TLS libraries, especially in different versions, can
result in complex setups and may require conflicting depen-
dencies installed alongside each other. To ease the evaluation
process and keep the results reproducible, we created Docker
images for open-source libraries which can start the provided
example client and server applications. Additionally, we cre-
ated a Java library that provides an abstraction layer to start
these Docker containers using a unified API that works for
every implementation. This allowed us to abstract away from
the command line parameters each server or client implemen-
tation requires to start successfully. These are, for example,
the port on which the server listens or the server to which a
client implementation should connect to.

The TLS-Docker-Library contains Docker images of 23
different TLS libraries with around 700 different versions in

8

total. We believe that this project is a valuable resource for
the community, independently of the developed test suite. We
release TLS-Docker-Library alongside TLS-Anvil. For the
interested reader, we provide an example of how to start an
OpenSSL server in the TLS-Docker-Library GitHub reposi-
tory.2

6 Evaluation

In order to evaluate TLS-Anvil, we tested open-source TLS
libraries with their respective newest labeled versions at the
time as listed in Table 4. To remain consistent with related
literature, we selected libraries that have been analyzed in
various other publications. We further guided our selection to
cover implementations in different programming languages,
such as Rust and Python. We then tested the provided example
client and server implementations in their default configura-
tion.

6.1 Performance and Code Coverage
To benchmark TLS-Anvil, we measured the performance
based on the server evaluation of the libraries. We used a
virtual machine with 16 cores with a clock speed of 2800
MHz and 16 GB RAM. We provide the complete overview
of the execution time and the number of connections required
for each library for testing strengths one to three in Table 4.
For strength three, the execution time varied between 5.9 and
67.2 hours among the libraries. As expected, the execution
time of strength one is much smaller, varying between 0.1
and 2.6 hours.

The benchmark shows two significant outliers. wolfSSL
had a very high execution time of 50.4 hours with compar-
atively few 64079 handshakes. This is due to the behavior
of wolfSSL’s example server, which frequently terminated,
requiring a time-consuming restart of the docker container.
mbedTLS had the most individual connections while only
supporting TLS 1.2. This is the result of mbedTLS’ extensive
default configuration that accepted 44 cipher suites and 13
named groups. Since these capabilities significantly define
the extent of the implementation-specific IPM, a given test
template, in general, required more individual connections for
mbedTLS than for any other library to achieve the coverage
guarantees of the t-way test.

We also measured the code coverage TLS-Anvil reached
for OpenSSL and compared it to the tlsfuzzer of Hubert
Kario [62] and TLS Inspector [1] from Achelos to give an idea
of the extent of our test suite beyond the number of our test
templates. To determine the code coverage, we instrumented
the library with kcov [28]. Both TLS Inspector and tlsfuzzer
(despite the name) are test suites, while tlsfuzzer sometimes
uses a fuzzing approach within its tests. For comparability,
we used the OpenSSL server as tlsfuzzer does not support

2https://github.com/tls-attacker/TLS-Docker-Library

client tests. As for the rest of the evaluation, we used strength
t = 3 for the combinatorial testing in TLS-Anvil. tlsfuzzer
reached a code coverage of 17.4% while TLS-Anvil reached
17.3% and TLS Inspector 14.6%. Note that OpenSSL consists
of various cryptographic tools. Consequentially, large parts
of the code can not be reached using TLS sessions.

6.2 Findings
We divided the test results into four categories: tests that
strictly succeeded, tests that conceptually succeeded, and
tests that fully or partially failed. Succeeded tests indicate
that the SUT performed actions that are in conformance with
the specification. Failed tests, on the other hand, indicate that
the SUT directly violated the specification and was acting in
direct contradiction.

Strictly succeeded A strictly succeeded test means that a
library behaved exactly as expected. If multiple test cases are
performed during the execution of a test template, the SUT
must have behaved correctly across all of them.

Conceptually succeeded A conceptually succeeded test
means that an implementation did not precisely fulfill the
RFC requirements or did not do so in all test cases but effec-
tively behaved correctly. This usually applies to tests where a
fatal alert was expected, but the library either only closed the
connection but did not send an alert, or the alert description
did not match the RFC’s specification.

Partially failed When multiple handshakes are performed
for a test template, the partially failed result indicates that not
all test inputs failed for a specific test template.

Fully failed A fully failed result means that the SUT did
not behave correctly for any test input.

For failed tests, we further analyzed possible reasons
using TLS-Anvil’s Report Analyzer to ascertain our findings.

6.2.1 Overall Results

We count all tests as ‘passed’ that either succeeded strictly
or conceptually and include the percentage of passed tests in
Table 5. We further list the ratio of conceptually to strictly
succeeded tests as an additional metric to compare how close
an implementation is to the RFC for our tests. Rustls, for
example, passed many tests, but most of them only succeeded
conceptually as Rustls often did not send any alerts. Botan,
in contrast, often fulfilled the expectations of our tests and, at
the same time, was very accurate with alert descriptions. We
generally found that most libraries pass a high ratio of the test
templates, with NSS, BoringSSL, tlslite-ng, and OpenSSL
passing around 97% of their applied server tests. Among
the client tests, BearSSL, BoringSSL, and Botan have the
highest ratio of passed tests with 97.3%, 96.8%, and 96.2%,

9

https://github.com/tls-attacker/TLS-Docker-Library

respectively. We further expand upon the results of libraries
with significantly worse ratios in Section 6.2.2.

In Table 6 we list how many test templates of an RFC
passed and how many were executed for each library. We
grouped the results of test templates based on similar error
cases and identified a total of 239 issues. We further cate-
gorized these findings based on their impact and determined
that three immediately led to exploits in wolfSSL and Ma-
trixSSL. Additionally, we found five issues affecting the
cryptography of a handshake. As an example, the clients of
MatrixSSL, s2n, and wolfSSL are willing to negotiate pa-
rameters they did not offer. While none of the parameters
negotiated are (sufficiently) weakening the security to pose
an immediate threat now, parameter negotiation is a basic
security property of every cryptographic protocol to prevent
current and potential future attacks. We further identified
15 issues affecting the interoperability to an extent where a
peer that operates within the boundaries of the RFC may not
be able to complete a handshake. Note that this may also
include intentional deviations by the developers if they break
the implementation’s correctness in regards to the specifica-
tion. 100 issues account for various likely uncritical cases
where a library deviated from the RFC beyond alert codes and
where interoperability should not be affected. Examples of
these findings are a bug in OpenSSL, which allowed multiple
TLS 1.3 HelloRetryRequestmessages, which can keep the
client in a handshake loop, or the support of deprecated curves
by mbedTLS. Finally, we grouped 116 cases where a library
did not send an alert or sent a different alert than requested
by the RFC. These are minor deviations from the standard.
However, in the past, information gained from the type of
alert sent by an implementation has been used to mount side-
channel attacks [10, 36]. To avoid such deviations, great care
must be taken when designing the alert handling of an im-
plementation. We hence chose to include these findings in
our reports to the developers. We describe the more severe
findings in Section 6.2.3 and present the number of findings
for each evaluated library based on the above categorization
in Table 2.

6.2.2 Outliers of the Evaluation

As can be seen in Table 5, GnuTLS, MatrixSSL, s2n, and
wolfSSL clients only passed comparatively few tests. In the
case of GnuTLS and wolfSSL this is due to an intolerance to-
wards record fragmentation. Record fragmentation is a mech-
anism that allows an implementation to split TLS messages
into smaller fragments, containing at least a single byte [40].
These fragments are sent in independent TLS records. Both
implementations, GnuTLS and wolfSSL, failed to process
tiny records, particularly records that held only a single byte
of the message payload. As record fragmentation is a pa-
rameter of the combinatorial testing, not all inputs resulted
in a success for a test case. This is evident from the large

Library Exploit Crypto Interop. Alerts Other

BearSSL 0 0 1 15 4
BoringSSL 0 0 0 6 3
Botan 0 0 0 3 3
GnuTLS 0 0 1 9 10
LibreSSL 0 1 1 7 6
MatrixSSL 2 2 7 6 16
mbed TLS 0 0 1 14 5
NSS 0 0 0 7 6
OpenSSL 0 0 0 6 7
Rustls 0 0 1 15 7
s2n 0 1 0 13 12
tlslite-ng 0 0 0 2 10
wolfSSL 1 1 3 13 11

3 5 15 116 100

Table 2: Overview of the findings for each library with results
categorized based on their impact. We distinguish between im-
mediately exploitable issues (Exploit) and issues that illicitly
affect the cryptographic computations in a session (Crypto).
The category ’Other’ accounts for a vast range of findings
that do not affect the security or interoperability, such as mi-
nor state machine bugs or support for deprecated (but safe)
features. ’Alerts’ refers to alert handling and is a category
separated from these findings as the deviations are marginal
but may result in a vulnerability under certain circumstances.

number of tests that only failed partially. Excluding record
fragmentation, the results are closer to other implementations,
as seen by the number of entirely failed tests.

s2n has a large number of tests that failed completely. This
is due to s2n’s error handling; when an error occurs, or mis-
behavior of the peer is detected, s2n sends an alert but does
not close the connection. As far as we evaluated this state, it
is impossible to send further handshake messages or appli-
cation data, but this requires a detailed analysis for each test
case. The connection should be closed properly to facilitate
the evaluation and ensure that it is impossible to continue a
session.

Due to incorrect handling of HelloRetryRequest mes-
sage flows with the TLS_AES_256_GCM_SHA384 cipher
suite, the MatrixSSL client often failed to complete
handshakes. Since tests in TLS 1.3 usually require a
HelloRetryRequest to enforce a key exchange group other
than the default group of the client, this intolerance affects
the results of many test cases.

6.2.3 Detailed Findings
wolfSSL We found a directly exploitable authentication by-
pass for wolfSSL clients when TLS 1.3 is used. An attacker
can force the client to accept a TLS connection by sending
a Certificate message with an empty certificate list. The
wolfSSL client then ignores the CertificateVerify mes-

10

sage and accepts any unauthenticated key share it received.
wolfSSL’s behavior is a direct violation of an RFC require-
ment that demands a fatal alert upon receiving an empty
Certificate message in TLS 1.3. While our evaluation
was still ongoing, the bug had already been independently
discovered, reported3 and fixed in version 4.7.0.

Our evaluation also revealed that the wolfSSL client ac-
cepted a signature algorithm it did not offer. This only applied
to ECDSA_SHA224 and hints towards an internal misun-
derstanding, as the RSA_SHA224 algorithm and the named
group secp224r1 are among the offered parameters. Addi-
tionally, the server implementation showed an intolerance
towards ClientHello messages that contain more than 150
cipher suites. This may become an interoperability issue for
feature-rich clients.

MatrixSSL We discovered a segmentation fault4 in Ma-
trixSSL. The problem occurred only in cipher suites that
use HMAC SHA256 CBC, due to incorrect initialization of
SHA256 for the Lucky13 mitigation [19] when a record with
invalid padding is received. An attacker could exploit this vul-
nerability to retrieve information about the validity of padding,
leading to a padding oracle attack [64].

Our test results further showed that the MatrixSSL client
mishandled length fields. In TLS 1.3, messages with an up
to two-byte reduced handshake message length field resulted
in an infinite loop during the message parsing. This behavior
could be exploited in a denial of service attack. In TLS 1.2,
MatrixSSL proceeded to parse handshake messages correctly
despite the invalid handshake message length field. Because
negotiating an extended master secret was modeled as a pa-
rameter of our combinatorial testing, we noticed an interesting
behavior in how the length field was used. When both parties
send the corresponding extension, all handshake messages
exchanged influence the key calculation. While MatrixSSL
seemingly ignored the length field for parsing, its value deter-
mined which bytes influence the digest causing a discrepancy
between the actual parsed message and the message included
in the digest, which we categorize as a ’Crypto’ finding in our
overview. However, we currently do not see a way to exploit
this behavior.

The MatrixSSL client also accepted ServerKeyExchange
messages that negotiate a group that has not been offered in
the ClientHello. This applies to the groups secp192r1 and
secp224r1, which are deprecated by RFC 8422 and 8446 and
have comparatively weak parameters. For a developer, it is not
evident that the client accepts these weaker curves based on
an analysis of the ClientHello message. This misbehavior
results in the second ’Crypto’ finding for MatrixSSL

Furthermore, we discovered an interoperability issue in
MatrixSSL server where it could not process a ClientHello

3CVE-2021-3336
4CVE-2022-23809

if a client offered more than 32 named groups for the key
exchange.

LibreSSL We noticed that it is possible to send an addi-
tional encrypted ChangeCipherSpec message after complet-
ing a TLS 1.2 handshake with Libressl. Further analysis
revealed that this triggered a bug in LibreSSL, which caused
it to start decrypting incoming messages with its own write
key, such that the same key is used in both directions. The bug
is very similar to a bug found in OpenSSL by de Ruiter and
Poll in 2015 [54]. This is another example of a ’Crypto’ find-
ing. We further observed that the LibreSSL server is not able
to process a SignatureAlgorithms extension that includes
more than 32 algorithms.

s2n Like MatrixSSL, the s2n client accepts a
ServerKeyExchange message that negotiates an un-
proposed named group. In this case, this only applies to the
groups X25519 and secp521r1, which are not deprecated and
have strong parameters. Nevertheless, we stress that even
these particular groups could be targeted in the future. Secure
parameter negotiation is a fundamental security property of
every cryptographic protocol that prevents future attacks on
particular algorithms.

6.3 t-way Testing

Among the failed tests of individual libraries, we found mul-
tiple cases where a test template only failed partially. Ef-
fectively, this means that a failure only surfaced for specific
parameter choices. This concerns less crucial compliance
and interoperability issues, the negotiation of unproposed
cryptographic primitives, but most importantly, the padding
oracle vulnerability in MatrixSSL. Our evaluation identified
29 of these partially failed tests across all evaluated libraries.5

We argue that these test templates in particular justify the
concept of CT, as a traditional software test would require
multiple manually written tests aimed at these specific param-
eter choices to uncover the same issue.

Testing Strength While our evaluation used a testing
strength of three, all of the failures we found were caused
by a combination of at most two parameters. This means
that a lower test strength with fewer handshakes overall can
be used to identify the same faults. Given the extent of our
parameters, even an execution with strength one may uncover
all faults, but it is not guaranteed that all relevant combina-
tions appear in the test inputs, and therefore some flaws might
be missed. At the same time, a strength above three may
uncover additional, more complex faults not yet observed in
our evaluation.

5We excluded partially failed tests of wolfSSL, MatrixSSL, and GnuTLS
caused by prevalent bugs.

11

7 Discussion

Our evaluation revealed a vast range of implementation fail-
ures which proves that our methodology can be beneficial
to the quality and security of future versions of the analyzed
libraries. Still, other testing approaches remain necessary for
a complete picture of an implementation’s quality.

Limitations Since our methodology focuses on black box
system tests, limitations to the testable requirements apply.
This mostly affects requirements that can not or not reliably
be tested without access to the internals of the implementa-
tion. Additionally, the SUT must have all features enabled
that should be tested. In contrast to software verification, CT
can only find flaws that affect code that is actually executed.
In order to do so, it is essential that all relevant parameters are
modeled and that the values considered by CT also cover rel-
evant corner cases. Both parameters and their values, require
some amount of intuition of which aspects of an input can
potentially cause software faults. Additionally, the design of a
test template for a given requirement is not bijective, leaving
some decisions to the tester.

Another drawback of our IPM constraining methodology is
that it always tests with only one invalid parameter. A combi-
nation of multiple invalid parameters may yield a more severe
implementation error than the one detected with a single non-
conformity but makes the implementation of a reliable test
oracle harder. The applicability of our approach is eventually
also limited by the precision of the tested requirement. If im-
plicit limitations exist in the standard, which are not reflected
by an explicit requirement, there is a chance that they are
missed in the testing process.

Finally, we created our test templates manually after sys-
tematic analyses of TLS RFCs. To extend TLS-Anvil to con-
sider new tests (e.g., tests with modified X.509 certificates),
further manual analysis is necessary. Unfortunately, there are
no practical, fully automatic algorithms to generate tests from
specifications [13]. However, we want to stress that while
the test template generation demands a significant amount of
work, this work only needs to be performed once. The result-
ing test templates can then be used to test different libraries in
different versions and can be included in continuous testing
frameworks.

RFC Discussion In our case study, we noticed shortcom-
ings which ultimately hindered tests for some requirements
and contribute to the difficulty of automating the derivation of
test templates. First of all, the RFCs use the keywords from
RFC 2119 to emphasize absolute requirements but do not do
so consistently. Coming back to the example from Section 4.2,
the TLS 1.2 RFC never explicitly uses a mandatory keyword
to point out the importance of MAC validation. The same
applies to the validation of signatures computed by a TLS
server. However, these values are a crucial part of the security
of TLS and, therefore must be validated. Shortcomings like

these must be considered to obtain an extensive and meaning-
ful test suite. The newer TLS 1.3 RFC is already clearer in
this regard. Within the considered RFCs, restrictions were
often only imposed on the sender of a message without speci-
fying what the recipient must do upon detecting a violation.
A requirement to enforce these restrictions whenever possible
would reduce the leeway and hence enable meaningful tests.

Ultimately, each requirement necessitates an analysis if it
is suitable for the testing approach used. This task can be far
from trivial as deep domain knowledge may be necessary to
determine this categorization correctly.

Responsible Disclosure and Feedback We responsibly
disclosed all of our findings to the respective developers. Dur-
ing the disclosure process, multiple developers stated that
they intentionally violate RFC requirements in specific cases.
As an example, in TLS 1.2 peers are not allowed to resume
a session that has been terminated by a fatal alert. However,
when multiple sessions take place in parallel, this requirement
is difficult to implement. Multiple developers also stated that
they intentionally send different alerts or no alerts at all. One
reason was to minimize the risk of creating an alert-oracle
for attacks. We do, however, stress that the specified alert
handling of current TLS RFCs does not result in a known,
exploitable oracle but is considered to be secure and refer
to our discussion in Section 6.2. Our original test suite con-
tained 18 additional test templates, which we removed from
the test suite after discussions with different library devel-
opers. Their reasoning convinced us that in these cases our
interpretation of the RFC was too strict and that their library
behavior was indeed valid. Our presented evaluation does
not contain these additional test templates anymore. There
were also some cases where the developers argued that it is
unreasonable to follow the specification. For example, in
some tests, a server that supports TLS 1.3 and TLS 1.2 would
need different alert handling for the same effective test. The
situation becomes even more tricky when the server has not
decided which protocol version to speak yet. For example,
a server that receives a malformed or illegal ClientHello
message would first need to evaluate the supported protocol
version of the client to decide upon the correct alert handling
rules. Correctly handling these nuances can be very complex,
and it is arguable if the strict RFC conformance across all
supported versions is worth the added complexity.

The security bugs we reported and most of our other reports
have been acknowledged by the developers and will be consid-
ered for future releases. Since most failed test templates only
failed for single or very few libraries, we conclude that the
developers in general share our understanding of the RFCs.

8 Related Work
TLS Testing There are several tools to test TLS libraries.
TLS-Attacker is a framework to analyze TLS libraries. So-

12

morovsky published the first version of TLS-Attacker in
2016 [58]. He presented basic concepts behind the frame-
work and showed how to implement known TLS attacks and
simple fuzzing strategies. Somorovsky also showed that it is
generally possible to develop test suites with TLS-Attacker,
by implementing proof of concept system tests. The pre-
liminary testing strategies did not include CT techniques or
comprehensive test oracles for them. We use an extended ver-
sion of TLS-Attacker in TLS-Anvil. Similar to TLS-Attacker,
FLEXTLS [6, 20] is a framework to build tools to test TLS
libraries. It was used to find vulnerabilities like FREAK or
SKIP [5]. FLEXTLS is no longer maintained.
Another testing library is Boarssl [9], which is a test suite
that is developed alongside of Bearssl. Boarssl is used in the
Twrch framework, mainly to test Bearssl. ’tlsfuzzer’ [62] is,
despite its name, a test suite for TLS implementations that
implements test cases for TLS servers. Among those test
cases are explicit RFC requirements and specific test cases
to prevent regressions for previous discovered bugs. Another
test suite is implemented in the commercial tool ’TLS Inspec-
tor’ [1] by the company Achelos. TLS Inspector implements
test cases derived from selected requirements of the RFCs and
the guideline TR-03116-4[25] of the German Federal Office
for Information Security, which focuses on additional explicit
requirements for secure TLS configurations.

Combinatorial Testing The approach of t-way testing of
TLS libraries is not new. In [23, 56, 57] t-way testing was used
to generate variations of the TLS handshake with different pa-
rameters. The authors then used a reference implementation
as a test oracle and compared the behavior of different imple-
mentations. These approaches were able to show that differ-
ent implementations behaved differently in response to the
generated inputs. This approach is generally not suitable for
complex protocols like TLS, as oftentimes multiple answers
should be considered valid by the test oracle for a given input.
For example, if the SUT and the reference library support dif-
ferent algorithms, connection termination or handshake con-
tinuation are both valid responses to a given ClientHello.
This produces unmanageable amounts of false positives dur-
ing an automated evaluation, which showed in the authors’
inability to convert their observed behavior differences into
actionable findings. In [29] combinatorial testing techniques
were used together with differential testing methods to test
X.509 certificate validation. They then manually analyzed the
discovered differences for vulnerabilities.

Further Automatic Test Input Generation Techniques
Since generating test inputs is a crucial aspect of testing,
various studies analyzed techniques to fulfill this task. Over
the recent years, fuzzing has been widely used in practice
to find inputs that crash software or lead to memory corrup-
tion. Current research in this field focuses on optimization
strategies [14, 34] that yield a higher coverage within less
execution time. Another technique for the generation of test

inputs is based on symbolic execution. In contrast to using
specific test inputs, symbolic execution first uses an inter-
preter that analyzes the branches within the software using
symbolic variables. This ultimately allows for exhaustive
branch coverage, but the efficiency of the approach is limited
by the complexity of the software [33]. In the context of
TLS, symbolic execution has been successfully used by Chau
et al. [12] to evaluate compliance of the X.509 certificate
validation logic in TLS libraries.

Requirements Engineering A sub-discipline in software
engineering is Requirements Engineering (RE) [26], with the
goal to collect, document, validate, and manage requirements
for a given system. Automatically extracting requirements
from documents written in Natural Language and the deduc-
tion of program code from the extracted requirements has
proven to be very difficult. A study for RFC-based X.509
testing in the TLS landscape by Chen et al. [13] developed al-
gorithms to generate tests from RFCs but ultimately had to fall
back to performing steps manually due to limitations in the
current state of Natural Language Processing. Their approach
also focused on passages of the RFCs marked as absolute
requirements based on the terminology of RFC 2119 [39]. A
subsequent study by Chen et al. tested the applicability of the
methodology to developer guides of payment services [15].
Again, a fully automated approach was not feasible, and man-
ual work was required.

9 Conclusions and Future Work

In this work, we presented a methodology to conduct combi-
natorial testing for complex protocols such as TLS. Our eval-
uation of the technique revealed 239 issues overall, including
15 interoperability issues, five issues that illicitly affect cryp-
tographic computations, and three immediately exploitable
vulnerabilities. Coming back to our first research question,
we determine that multiple TLS libraries still show a range of
unintended deviations from the protocol specification, even to
the extent of exploitable vulnerabilities. While these individ-
ual findings are surprising, given the extensive research and
testing that has been conducted for the considered libraries
in the past, we also found that the overall compliance to the
specification is high. As for our second and third research
question that concern the applicability of CT and effectiveness
of our approach of utilizing CT, we found that our test oracles
based on test templates produced actionable results and are
thus better suited than the reference implementation-based ap-
proaches of previous studies. These resulted in unmanageable
differences between TLS libraries requiring further manual
analysis, which ultimately could not be converted into real
software faults.

While TLS-Anvil already considers a large number of re-
quirements from the RFCs, the TLS protocol contains even
more features with testable requirements that could be in-

13

corporated. Additionally, our evaluation only considered the
default configuration of TLS libraries. These can often be con-
figured at build time to use certain features and optimizations
which might influence their behavior. It may be of interest to
include such build parameters in the IPMs used for the com-
binatorial testing to also find flaws that are only present in
specific configurations. Furthermore, TLS related protocols
like DTLS and QUIC could be tested with TLS-Anvil in the
future. Generally, the presented methodology is suitable for
standardized protocols with many different implementations
(like TLS, SSH or IPSEC). While it is also applicable to
protocols with only a single implementation, it is more cost
efficient to write individual tests or test templates for that spe-
cific implementation since the presented black box approach
requires preliminary steps, such as the feature extraction.

Our evaluation showed that security-critical bugs, such as
the authentication bypass for wolfSSL, can be found in widely
used TLS libraries based on testing RFC requirements. The
ability to test these requirements strongly depends on the
tester’s ability to identify these requirements. We, therefore,
recommend that future specifications continue the trend set by
TLS 1.3 to mark requirements as precise as possible. The TLS
1.3 specification was also already implemented alongside of
the writing process; for future specifications, it may prove
valuable to also develop a test suite like TLS-Anvil alongside
of the specification. The developed test suite could serve as
an authority on how the RFCs, which are written by humans
for humans, have to be interpreted by machines, and ensure
that all implementations are, and stay interoperable to one
another. It would also increase the confidence of developers in
their implementation, which would speed up the development
process and ultimately help to adapt newer standards quicker.

Acknowledgments

We would like to thank Malena Ebert, Jan Kaiser, Joeri de
Ruiter, Jan Drees, Nimrod Aviram, and Filippo Valsorda
for their contribution to the TLS Docker Library. We fur-
ther thank Achelos for providing us access to TLS Inspec-
tor. This research was partially funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 450197914 and under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972.

Availability

TLS-Anvil and TLS-Docker-Library are available as open-
source projects under the Apache 2.0 license at https://
github.com/tls-attacker/TLS-Anvil and https://
github.com/tls-attacker/TLS-Docker-Library.

References

[1] Achelos TLS Inspector. https://www.achelos.de/de/
tls-inspector.html.

[2] Nadhem AlFardan, Daniel J. Bernstein, Kenneth G. Paterson,
Bertram Poettering, and Jacob C. N. Schuldt. “On the Secu-
rity of RC4 in TLS”. In: 22nd USENIX Security Symposium
(USENIX Security 13).

[3] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Na-
dia Heninger, Maik Dankel, Jens Steube, Luke Valenta,
David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia
Käsper, Shaanan Cohney, Susanne Engels, Christof Paar,
and Yuval Shavitt. “DROWN: Breaking TLS Using SSLv2”.
In: USENIX Security Symposium 2016.

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shah-
baz, and Shin Yoo. “The Oracle Problem in Software Testing:
A Survey”. In: IEEE Trans. Software Eng. 5 (2015).

[5] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Al-
fredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzindo-
houe. “A Messy State of the Union: Taming the Composite
State Machines of TLS”. In: 2015 IEEE Symposium on
Security and Privacy.

[6] Benjamin Beurdouche, Antoine Delignat-Lavaud, Nadim
Kobeissi, Alfredo Pironti, and Karthikeyan Bhargavan.
“FLEXTLS: A Tool for Testing TLS Implementations”. In:
9th USENIX Workshop on Offensive Technologies (WOOT
15).

[7] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practi-
cal (In-)Security of 64-bit Block Ciphers: Collision Attacks
on HTTP over TLS and OpenVPN”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communi-
cations Security.

[8] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard PKCS #1”.
In: Advances in Cryptology - CRYPTO ’98, 18th Annual
International Cryptology Conference.

[9] BoarSSL. https://www.bearssl.org/boarssl.html.

[10] Hanno Böck, Juraj Somorovsky, and Craig Young. “Return
Of Bleichenbacher’s Oracle Threat (ROBOT)”. In: USENIX
Security Symposium 2018.

[11] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khur-
shid, and Vitaly Shmatikov. “Using Frankencerts for Auto-
mated Adversarial Testing of Certificate Validation in SS-
L/TLS Implementations”. In: Proceedings of the 2014 IEEE
Symposium on Security and Privacy.

[12] Sze Yiu Chau, Omar Chowdhury, Md. Endadul Hoque,
Huangyi Ge, Aniket Kate, Cristina Nita-Rotaru, and Ninghui
Li. “SymCerts: Practical Symbolic Execution for Exposing
Noncompliance in X.509 Certificate Validation Implementa-
tions”. In: 2017 IEEE Symposium on Security and Privacy.

[13] Chu Chen, Cong Tian, Zhenhua Duan, and Liang Zhao.
“RFC-directed differential testing of certificate validation in
SSL/TLS implementations”. In: Proceedings of the 40th In-
ternational Conference on Software Engineering ICSE 2018.

14

https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Docker-Library
https://github.com/tls-attacker/TLS-Docker-Library
https://www.achelos.de/de/tls-inspector.html
https://www.achelos.de/de/tls-inspector.html
https://www.bearssl.org/boarssl.html

[14] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by
Principled Search”. In: 2018 IEEE Symposium on Security
and Privacy, SP 2018.

[15] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng
Wang, Kai Chen, and Wei Zou. “Devils in the Guidance:
Predicting Logic Vulnerabilities in Payment Syndication
Services through Automated Documentation Analysis”. In:
USENIX Security Symposium 2019.

[16] Yuting Chen and Zhendong Su. “Guided Differential Testing
of Certificate Validation in SSL/TLS Implementations”. In:
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering.

[17] coffee4j. https://coffee4j.github.io/.

[18] Thai Duong and Juliano Rizzo. Here come the XOR ninjas.

[19] N. J. Al Fardan and K. G. Paterson. “Lucky Thirteen: Break-
ing the TLS and DTLS Record Protocols”. In: 2013 IEEE
Symposium on Security and Privacy.

[20] FlexTLS. https://github.com/DinoTools/python-
flextls.

[21] Konrad Fögen, “Combinatorial Robustness Testing based on
Error-Constraints”, PhD thesis, RWTH Aachen University,
Germany, 2021

[22] Christina Garman, Kenneth G. Paterson, and Thyla Van der
Merwe. “Attacks Only Get Better: Password Recovery At-
tacks Against RC4 in TLS”. In: USENIX Security Sympo-
sium 2015.

[23] Bernhard Garn, Dimitris E. Simos, Feng Duan, Yu Lei, Josip
Bozic, and Franz Wotawa. “Weighted Combinatorial Se-
quence Testing for the TLS Protocol”. In: 2019 IEEE Inter-
national Conference on Software Testing, Verification and
Validation Workshops (ICSTW).

[24] William E. Howden. “Theoretical and Empirical Studies of
Program Testing”. In: Proceedings of the 3rd International
Conference on Software Engineering, 1978.

[25] German Federal Office for Information Security (BSI). “TLS
nach TR-03116-4 - Checkliste für Diensteanbieter”. In: TR-
03116-4.

[26] “ISO/IEC/IEEE International Standard - Systems and soft-
ware engineering – Life cycle processes –Requirements en-
gineering”. In: ISO/IEC/IEEE 29148:2011(E) (2011).

[27] JUnit 5. https://junit.org/junit5/.

[28] kcov. https://github.com/SimonKagstrom/kcov.

[29] Kristoffer Kleine and Dimitris E. Simos. “Coveringcerts:
Combinatorial Methods for X.509 Certificate Testing”. In:
2017 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2017.

[30] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. “A Model
for T-Way Fault Profile Evolution during Testing”. In: 2017
IEEE International Conference on Software Testing, Verifica-
tion and Validation Workshops, ICST Workshops 2017.

[31] D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo.
“Software Fault Interactions and Implications for Software
Testing”. In: IEEE Trans. Software Eng. 6 (2004).

[32] D.R. Kuhn and M.J. Reilly. “An investigation of the applica-
bility of design of experiments to software testing”. In: 27th
Annual NASA Goddard/IEEE Software Engineering Work-
shop, 2002. Proceedings.

[33] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and
George Candea. “Efficient state merging in symbolic exe-
cution”. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12.

[34] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee.
“Constraint-guided Directed Greybox Fuzzing”. In: USENIX
Security Symposium 2021.

[35] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and
James Lawrence. “IPOG: A General Strategy for T-Way
Software Testing”. In: 14th Annual IEEE International Con-
ference and Workshop on Engineering of Computer Based
Systems (ECBS 2007).

[36] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig
Young, Janis Fliegenschmidt, Jörg Schwenk, and Yuval
Shavitt. “Scalable Scanning and Automatic Classification of
TLS Padding Oracle Vulnerabilities”. In: USENIX Security
Symposium 2019.

[37] Stacy J. Prowell and Jesse H. Poore. “Foundations of
Sequence-Based Software Specification”. In: IEEE Trans.
Software Eng. 5 (2003).

[38] Zachary B. Ratliff, D. Richard Kuhn, Raghu N. Kacker, Yu
Lei, and Kishor S. Trivedi. “The Relationship between Soft-
ware Bug Type and Number of Factors Involved in Failures”.
In: 2016 IEEE International Symposium on Software Relia-
bility Engineering Workshops (ISSREW).

[39] S. Bradner, Key words for use in RFCs to Indicate Require-
ment Levels, RFC 2119

[40] T. Dierks and E. Rescorla, The Transport Layer Security
(TLS) Protocol Version 1.2, RFC 5246

[41] D. Eastlake 3rd, Transport Layer Security (TLS) Extensions:
Extension Definitions, RFC 6066

[42] S. Turner and T. Polk, Prohibiting Secure Sockets Layer
(SSL) Version 2.0, RFC 6176

[43] P. Gutmann, Encrypt-then-MAC for Transport Layer Secu-
rity (TLS) and Datagram Transport Layer Security (DTLS),
RFC 7366

[44] Y. Sheffer, R. Holz, and P. Saint-Andre, Summarizing Known
Attacks on Transport Layer Security (TLS) and Datagram
TLS (DTLS), RFC 7457

[45] A. Popov, Prohibiting RC4 Cipher Suites, RFC 7465

[46] B. Moeller and A. Langley, TLS Fallback Signaling Cipher
Suite Value (SCSV) for Preventing Protocol Downgrade At-
tacks, RFC 7507

[47] R. Barnes, M. Thomson, A. Pironti, and A. Langley, Depre-
cating Secure Sockets Layer Version 3.0, RFC 7568

[48] A. Langley, A Transport Layer Security (TLS) ClientHello
Padding Extension, RFC 7685

[49] D. Gillmor, Negotiated Finite Field Diffie-Hellman
Ephemeral Parameters for Transport Layer Security (TLS),
RFC 7919

15

https://coffee4j.github.io/
https://github.com/DinoTools/python-flextls
https://github.com/DinoTools/python-flextls
https://junit.org/junit5/
https://github.com/SimonKagstrom/kcov

[50] Y. Nir, S. Josefsson, and M. Pegourie-Gonnard, Elliptic
Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS) Versions 1.2 and Earlier, RFC 8422

[51] E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.3, RFC 8446

[52] D. Benjamin, Applying Generate Random Extensions And
Sustain Extensibility (GREASE) to TLS Extensibility, RFC
8701

[53] Juliano Rizzo and Thai Duong. “The CRIME attack”. In:
Ekoparty Security Conference 2012.

[54] Joeri de Ruiter and Erik Poll. “Protocol State Fuzzing of
TLS Implementations”. In: USENIX Security Symposium
2015).

[55] Rolf Schwitter. “English as a Formal Specification Lan-
guage”. In: 13th International Workshop on Database and
Expert Systems Applications (DEXA 2002).

[56] Dimitris E. Simos, Josip Bozic, Feng Duan, Bernhard Garn,
Kristoffer Kleine, Yu Lei, and Franz Wotawa. “Testing TLS
Using Combinatorial Methods and Execution Framework”.
In: Testing Software and Systems - 29th IFIP WG 6.1 Inter-
national Conference, ICTSS 2017.

[57] Dimitris E. Simos, Josip Bozic, Bernhard Garn, Manuel
Leithner, Feng Duan, Kristoffer Kleine, Yu Lei, and Franz
Wotawa. “Testing TLS using planning-based combinatorial
methods and execution framework”. In: Softw. Qual. J. 2
(2019).

[58] Juraj Somorovsky. “Systematic Fuzzing and Testing of TLS
Libraries”. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security.

[59] This POODLE Bites: Exploiting The SSL 3.0 Fallback.
https://www.openssl.org/~bodo/ssl-poodle.pdf.

[60] TLS-Attacker. https://github.com/tls-attacker/
TLS-Attacker.

[61] TLS-Scanner. https://github.com/tls-attacker/
TLS-Scanner.

[62] tlsfuzzer. https://github.com/tomato42/tlsfuzzer.

[63] Mathy Vanhoef and Frank Piessens. “All Your Biases Belong
to Us: Breaking RC4 in WPA-TKIP and TLS”. In: USENIX
Security Symposium 2015.

[64] Serge Vaudenay. “Security Flaws Induced by CBC Padding
- Applications to SSL, IPSEC, WTLS ...” In: Advances in
Cryptology - EUROCRYPT 2002, International Conference
on the Theory and Applications of Cryptographic Techniques.

[65] David Wagner and Bruce Schneier. “Analysis of the SSL
3.0 Protocol”. In: Proceedings of the 2nd Conference on
Proceedings of the Second USENIX Workshop on Electronic
Commerce - Volume 2.

[66] Jiayu Zhu, Chengcheng Wan, Pengbo Nie, Yuting Chen, and
Zhendong Su. “Guided, Deep Testing of X.509 Certificate
Validation via Coverage Transfer Graphs”. In: 2020 IEEE
International Conference on Software Maintenance and Evo-
lution (ICSME).

Appendix

Parameter SUT Version Values

Cipher Suite 3 - 44
Named Group 2 - 13
Signature Algorithm5 5 - 15
Certificate2,5 4 - 18
Record Fragment Length 4
TCP Fragmentation bool
Session Ticket1,3 bool
Extended Master Secret1,3 bool
Encrypt-then-MAC1,3 bool
ALPN3 bool
GREASE Cipher Suites4 bool
GREASE Named Groups4 bool
GREASE Signature Algs4 bool
Heartbeat3 bool
Padding3 bool
Renegotiation Indication3 bool
PSK Key Exch. Modes3 bool
Send legacy CCS bool

Additional Padding Bytes 3
Alert Description 34
Application Data Length 16
Manipulated AEAD Tag Byte 16
Manipulated Ciphertext Byte 16
Manipulated MAC Byte 32 - 48
Manipulated PRF Byte 32 - 48
Manipulated Signature Byte 5 - 10
Manipulated Bit in Chosen Byte 8
Unproposed Compression Method 2
Selected Grease Cipher Suite 16
Selected Grease Extension 16
Selected Grease Named Group 16
Selected Grease Protocol Version 16
Selected Grease Signature Algo 16
Invalid ChangeCipherSpec 4
Protocol Message Type 6
Invalid Protocol Version 1 - 4

Used to test connection endpoint client server both
Used in version TLS 1.2 TLS 1.3 both
1: TLS 1.2 extensions have only been included in TLS 1.3 test templates
for server tests, as they are generally not applicable to client tests in this
version
2: For client tests, we used only valid certificates with different public
key types, signatures, and key lengths
3: Extension included or excluded from handshake messages - extensions
have only been negotiated in client tests if the client offered them
4: Appended to offered parameters
5: Parameter is only used if any message it affects gets sent by the test
template

Table 3: The parameters included commonly (top) and in
specific (bottom) IPMs created by TLS-Anvil. The number
of parameter values varies, depending on the TLS features
supported by the SUT.

16

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Attacker
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tls-attacker/TLS-Scanner
https://github.com/tomato42/tlsfuzzer

Strength t = 3 Strength t = 2 Strength t = 1

Library Version Execution Time Connections Execution Time Connections Execution Time Connections
BearSSL 0.6 19.1h 61253 3.7h 12088 0.5h 1825
BoringSSL 3945 14.8h 48929 3.4h 10587 0.6h 1844
Botan 2.17.3 6.1h 26394 1.3h 5485 0.3h 965
GnuTLS 3.7.0 31.2h 88730 6.1h 17328 0.9h 2726
LibreSSL 3.2.3 38.4h 121650 7.7h 25600 1h 3869
MatrixSSL 4.3.0 20.8h 57598 5.1h 12777 1.1h 2541
mbed TLS 2.25.0 67.2h 181265 9.6h 35087 0.9h 4041
NSS 3.60 33.6h 91521 7h 18774 1h 2922
OpenSSL 1.1.1i 31.2h 95379 5.7h 18522 0.8h 2861
Rustls 0.19.0 13.6h 30761 3.4h 7517 0.1h 568
s2n 0.10.24 5.9h 26669 1.4h 5640 0.3h 1023
tlslite-ng 0.8.0-a39 55.2h 118167 8.7h 22784 1.2h 3389
wolfSSL 4.5.0 50.4h 64079 11.5h 14618 2.6h 2986

Table 4: Overview of the number of connections and the execution time for each server implementation with different testing
strengths.

Library Tests Passed Passed
[%]

Strictly
succeeded

Conceptually
succeeded

Ratio
conceptually

Failed
partially

Failed
fully

Se
rv

er
s

BearSSL 109 102 93.6 48 54 52.9 1 6
BoringSSL 219 213 97.3 202 11 5.2 0 6
Botan 101 97 96.0 93 4 4.1 0 4
GnuTLS 240 229 95.4 221 8 3.5 3 8
LibreSSL 222 213 95.9 204 9 4.2 0 9
MatrixSSL 222 173 77.9 159 14 8.1 10 39
mbed TLS 113 105 92.9 80 25 23.8 1 7
NSS 225 220 97.8 205 15 6.8 0 5
OpenSSL 237 230 97.0 223 7 3.0 0 7
Rustls 219 209 95.4 191 18 8.6 1 9
s2n 104 95 91.3 44 51 53.7 1 8
tlslite-ng 239 233 97.5 228 5 2.1 1 5
wolfSSL 219 98 44.7 63 35 35.7 112 9

C
lie

nt
s

BearSSL 75 73 97.3 27 46 63.0 0 2
BoringSSL 190 184 96.8 172 12 6.5 0 6
Botan 78 75 96.2 74 1 1.3 2 1
GnuTLS 201 128 63.7 120 8 6.3 62 11
LibreSSL 193 178 92.2 169 9 5.1 1 14
MatrixSSL 193 133 68.9 113 20 15.0 40 20
mbed TLS 82 78 95.1 66 12 15.4 0 4
NSS 197 184 93.4 181 3 1.6 0 13
OpenSSL 197 184 93.4 181 3 1.6 0 13
Rustls 188 178 94.7 128 50 28.1 2 8
s2n 73 38 52.1 26 12 31.6 0 35
tlslite-ng 203 180 88.7 173 7 3.9 3 20
wolfSSL 198 105 53.0 67 38 36.2 85 8

Table 5: Overview of the results of the test templates for each tested library for strength t = 3. The columns on the left summarize
the number of passed test templates, while the columns on the right state more detailed results.

17

8446 5246 8701 8422 7919 7568 6066 7507 7465 7366 6176 7685 7457 State
Machine

Length
Field

Se
rv

er
s

Test Templates 97 46 10 14 5 3 6 2 2 2 1 1 0 25 44

BearSSL 0/0 41/43 5/5 9/13 1/1 3/3 3/4 2/2 0/0 0/0 1/1 1/1 0/0 17/17 19/19
BoringSSL 77/82 42/43 10/10 13/13 1/1 3/3 1/1 2/2 0/0 0/0 1/1 1/1 0/0 24/24 38/38
Botan 0/0 34/35 5/5 10/13 4/4 3/3 1/1 0/0 0/0 0/0 1/1 1/1 0/0 18/18 20/20
GnuTLS 88/91 39/43 10/10 11/13 4/4 3/3 3/4 2/2 0/0 2/2 1/1 1/1 0/0 24/24 41/42
LibreSSL 78/82 41/43 10/10 13/13 2/2 3/3 1/1 2/2 0/2 0/0 1/1 1/1 0/0 23/24 38/38
MatrixSSL 58/83 35/43 10/10 9/12 1/1 2/3 4/4 0/0 0/0 0/0 1/1 1/1 0/0 20/22 32/42
mbed TLS 0/0 40/43 5/5 10/13 2/2 3/3 2/4 2/2 0/0 2/2 1/1 1/1 0/0 18/18 19/19
NSS 80/83 42/43 10/10 13/13 4/4 3/3 1/1 2/2 1/2 0/0 1/1 1/1 0/0 24/24 38/38
OpenSSL 86/90 43/43 10/10 10/13 2/2 3/3 4/4 2/2 0/0 2/2 1/1 1/1 0/0 24/24 42/42
Rustls 83/88 34/36 10/10 11/12 1/1 3/3 1/1 0/0 0/0 0/0 1/1 1/1 0/0 24/24 40/42
s2n 0/0 37/41 5/5 10/12 1/1 3/3 1/1 2/2 0/0 0/0 1/1 1/1 0/0 17/18 17/19
tlslite-ng 88/91 42/43 10/10 11/13 4/4 3/3 1/1 2/2 0/0 2/2 1/1 1/1 0/0 24/24 44/44
wolfSSL 27/82 18/39 0/10 3/12 1/4 3/3 0/1 2/2 0/0 0/2 1/1 0/1 0/0 7/24 36/38

C
lie

nt
s

Test Templates 90 35 14 11 4 1 7 1 1 1 2 1 1 15 29

BearSSL 0/0 35/35 5/5 9/10 0/0 1/1 1/1 1/1 1/1 0/0 2/2 0/0 1/1 7/7 10/11
BoringSSL 80/86 35/35 14/14 9/9 0/0 1/1 0/0 1/1 1/1 0/0 2/2 0/0 1/1 15/15 25/25
Botan 0/0 31/31 5/5 8/9 3/4 1/1 1/1 1/1 1/1 0/0 2/2 0/0 1/1 6/7 15/15
GnuTLS 33/88 31/35 6/14 9/9 4/4 1/1 1/1 1/1 1/1 1/1 2/2 0/0 1/1 9/15 28/28
LibreSSL 78/86 33/35 10/14 9/9 2/2 1/1 0/0 1/1 0/1 0/0 2/2 0/0 1/1 15/15 26/26
MatrixSSL 51/87 30/35 8/14 8/10 0/0 1/1 1/1 1/1 1/1 0/0 2/2 0/0 1/1 14/15 15/25
mbed TLS 0/0 33/35 4/5 9/10 2/2 1/1 1/1 1/1 1/1 1/1 2/2 0/0 1/1 7/7 15/15
NSS 80/87 34/35 10/14 8/9 2/2 1/1 0/0 1/1 1/1 1/1 2/2 0/0 1/1 15/15 28/28
OpenSSL 80/87 34/35 10/14 8/9 2/2 1/1 0/0 1/1 1/1 1/1 2/2 0/0 1/1 15/15 28/28
Rustls 78/87 31/31 14/14 9/9 0/0 1/1 1/1 1/1 1/1 0/0 2/2 0/0 1/1 14/15 25/25
s2n 0/0 19/35 2/5 3/8 0/0 1/1 1/1 1/1 1/1 0/0 2/2 0/0 1/1 7/7 0/11
tlslite-ng 72/88 34/35 9/14 9/9 4/4 1/1 1/1 1/1 1/1 1/1 2/2 1/1 1/1 14/15 29/29
wolfSSL 30/87 22/35 6/14 5/8 2/4 1/1 0/0 1/1 1/1 0/1 2/2 0/0 1/1 7/15 27/28

Table 6: Overview of the number of implemented, executed, and passed test templates for each RFC or category for strength
t = 3. Client and server test templates are not disjoint sets. Our test suite consists of 408 unique test templates.

RFC Description
5246 [40] Primary TLS 1.2 standard, defining handshake, record layer, mandatory cipher suites, basic extensions, and

client/server behavior in unexpected situations
8446 [51] Primary TLS 1.3 standard, defining handshake, record layer, mandatory cipher suites, basic extensions, and

client/server behavior in unexpected situations
6066 [41] Specifies new extensions for TLS
6176 [42] Deprecates SSL 2 and forbids the fallback to this protocol
7366 [43] Specifies an Encrypt-then-MAC extension in response to CBC padding oracle attacks [19]
7457 [44] Summarizes known attacks on TLS and DTLS
7465 [45] Prohibits usage of RC4 following papers on breaking the stream cipher [2, 22, 63]
7507 [46] Specifies downgrade protection mechanisms
7568 [47] Deprecates SSL 3 and forbids the fallback to this protocol
7685 [48] Specifies a padding extension to inflate the ClientHello to account for servers with parser intolerances
7919 [49] Specifies the negotiation of finite field Diffie-Hellman parameters
8422 [50] Specifies handling of elliptic curve cipher suites for TLS 1.2 and earlier versions
8701 [52] Specifies a set of ’GREASE’ constants that are meant to ensure interoperability between peers with different

protocol features

Table 7: Brief overview of the considered RFCs and their contents

18

	Introduction
	Background
	tls
	Software Testing

	Methodology
	Test Templates for Reliable Test Oracles
	Limiting the number of test cases
	Test Suite Execution

	tlsanvil
	Architecture
	Requirement Selection
	Resulting Test Templates

	TLS-Docker-Library
	Evaluation
	Performance and Code Coverage
	Findings
	Overall Results
	Outliers of the Evaluation
	Detailed Findings

	t-way Testing

	Discussion
	Related Work
	Conclusions and Future Work
	Appendix

